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FOREWORD

This is the final volume of the Proceedings of the

CUPM Geometry Conference, held at Santa Barbara in June,

1967. Part I of the Proceedings contains an Introduction

by Walter Prenowitz and the lectures of Branko GrUnbaum

and Victor Klee on Convexity. Part II contains the lectures

of Andrew Gleason and Norman Steenrod on Geometry in Other

Subjects.

The texts are based on recordings made of the lectures

and discussions, and were prepared for publication by the

assistants, Melvin Hausner, John Reay and Paul Yale. The

lecturers were able to make minor changes and corrections

on the final sheets, hut an early deadline prevented major

revision or extensive polishing of thc texts. The typing

for offset was done by Mrs. K. Black and the figures were

prepared by W. David M. Youngdahl.

Lincoln K. Durst

Claremont Men's College
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TRANSFORMATION GROUPS FROM THE GEOMETRIC VIEWPOINT

Lectures by H. S. M. Coxeter

(Lecture notes by Paul Yale)

Lecture I. Euclidean GeomIrx: The group of similarities.

When a geometry is characterized in accordance with Klein's Erlangen

program, two groups arise: a group G under which all the propositions remain

valid, and a normal subgroup H under which the concepts and their properties

are maintained. For instance, in the case of Euclidean geometry, G is the

group of similarities (because every true theorem remains true when any simi-

larity is applied to the figure involved) and H is the group cf displacements

(or direct isometries) because displacements preserve distance, area, and so on.

It is accordingly desirable to classify similarities and to discuss translations,

rotations, twists, and the way they can be built up from reflections.

believe that some version of this material should be in the curriculum

of our schools. I have a feeling that little bits of it should come in from

the first grade on, because everything is so simple, not requiring coordinates,

still less any calculus. We live in a space, so,not only for mathematicians,

but also for physicists, engineers, and architects, it is desirable to have

some feeling for space. Of course the first kind of space we should think

about is Euclidean space. Some educators have suggested that space should bc

studied in kindergarten, and the plane in first grade, since solid objects are

more natural to think of than flat figures. Euclidean geometry is essentially

a study of congruence and similarity, so zlt an early age one should see the

relation between a figure and a congruent or similar figure.

Although one would present it differently to young people, perhaps the

easiest way to define a similarity (or "similarity transformation") of the



Euclidean plane is in terms of barycentric coordinates. Suppose we are given

two similar scalene triangles. The transformation carrying a point with

barycentric coordinates (x,y,z) for the first triangle to the point with

barycentric coordinates (x,y,z) for the second is called a similarity. It is

a one to one transformation of the plane onto itself. It has a certain ratio

of magnification, p, which means that segments are increased by the ratio

p to 1 and areas by the ratio p
2

to 1. The similarity is direct if the two

triangles have the same sense and is opposite if they have opposite senses.

If p = 1, the transformation is called a congruent transformation or isometry.

It is desirable first to classify isometries and then to classify similarities.

The first theorem is that every isometry of the plane can be expressed as

the product of three or fewer reflections, a reflection being a transformation

that leaves fixed every point on a line, the mirror, and takes points on one

side of this line to points at the same distance on the other side. Reflection

is an involutory transformation; i.e., its period is two: the image of the

image is the object itself. To see that three reflections suffice, consider

two congruent triangles that are related by the given isometry. You may need

one reflection for the first pair of corresponding vertices, another for the

second pair, and a third for the third. Since each reflection reverses sense,

a product of an even number of reflections preserves sense; hence for displace-

ments (direct isometries) the number three may be reduced to two; i.e., each

displacement is the product of at most two reflections. The two mirrors may

coincide, in which case the product is the identity. They may be parallel and

then the product is a translation through twice the distance between the

mirrors. Or they may intersect, in which case the product is a rotation

through twice the angle between the mirrors. A film on this subject, called

Dihedral Kaleidoscopes has been made by the College Geometry Project of the

2



z L z
Translation Rotation

University of Minnesota.

We now turn to products of three reflections. If the three mirrors an:

all pa%allel then the three reflections are really equivalent to one, for the

translation that is the product of che first two could equally well be expressed

as the product of reflections in any two lines with the same spacing, so we can

take the first two mirrors and push them along until the second coincides with

the third and the product then reduces to one reflection. The same sort of

thing happens if we have the product of three reflections in concurrent lines.

We can rotate the first two mirrors bodily around the point of intersection

until the second coincides with the third and then the product of the three

reflections is a single reflection.

If one has the first two mirrors parallel and the third perpendicular to

both, then the product of the first two is a translation and the product of all

three is called a glide reflection. It is the operation represented by foot-

prints in the snow: when you walk straight along a path, the relation be-

tween the left foot and the right foot is exactly a glide reflection. That

is the typical opposite isometry. To see this, take three mirrors forming the

three sides of a triangle. As before, the rotation which is the product of the

first two reflections is the product of reflections in any two mirrors forming

3



the same angle at the point of intersection, so we can adjust the first two

mirrors so the second is perpendicular to the third. Then the product of the

second and third reflections is a half-turn about the point of intersection.

Thus the product of all three reflections is the product of a reflection and

a half-turn, which is a glide reflection. This completes the classification

of isometries in the plane.

When we pass from isometries to similarities there is the added possibility

of a change of scale. The simplest change of scale is a dilatation. Using the

terminology of Artin's Geometric Algebra, a dilatation is a transformation which

takes every line into a parallel line; i.e., a direction-preserving transfor-

mation. The translations are the simplest dilatations and are just those

dilatations with no fixed points. If a dilatation has an invariant point, 0

and carries A to A', then it is easy to find how any point is transformed.

This is the central dilatation with center 0 and ratio pi = OA' : OA. Let us

denote it by 0(p) and allow p to be negative, in which case o(p) trans-

forms each point into a point on the opposite side of 0 . In particular,

0(-l) is a half-turn. Any similarity can be thought of as a central dilata-

tion followed by an isometry.

Apart from translations, every direct similarity leaves one point in-

variant. For example, if two maps of California are drawn to different scales
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on two sheets of tracing paper and superposed, then it is possible to pierce

the two maps at just one point representing the same geographic position on

both maps. The following simple construction determines this invariant point.

If the direct similarity is not a dilatation, then we can choose two points,

A and B, and their image points, A' and BI, such that the two lines

AB and A'B' are not parallel. Let C be their point of intersection. Con-

sider the circle through AA'C and the circle through BB'C. Aside from a

trivial case in which the circles are tangent, these two circles intersect

again in another point O. The agreement of angles at A and A', and

similarly at B and B', shows that the triangles AOB and A'OB' are

directly similar. Therefore 0 is invariant for the given direct similarity.

This invariant point is unique, since the only direct similarity that has more

than one invariant point is the identity.

If a direct similarity S with invariant point 0 has ratio of magnifi-

cation 11, its product with the central dilatation 0(1/) is a direct

isometry leaving 0 invariant, that is, a rotation about 0. Therefore, S

itself is a dilative rotation: the product of O(j) and a rotation about O.

The product of the dilatation

x 1 yl = PY
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and the rotation

x' = x cos a - y sin a, y' = x sin a + y cos u

is the dilattve rotation

x' = p(x cos a - y sin a), y' = p(x sin a + y cos 'a) ,

th th
which takes (a,0) to (pa cos a, pa sin u). Its n-- power (or n-- iterate)

takes (a,0) to

n
n .

(Ia cos ny, p a sin nu).

By allowing n to have all real values instead of only integer values, we can

regard the dilative rotation as a continuous transformation for which the orbit

of (a,0) is the curve

n .

x = [Ina cos ay, y = p a sin nu

or, in terms of 0 = nu and c = (log p)/u,

c0
cos 0,

c0
x ae

.

y = ae sin 0.

As this curve is the equiangular spiral r = ae
c0

, the dilative rotation is

(1)

sometimes called a spiral similarity. Allowing a to take various values

between e we obtain a "pencil" of congruent spirals, one through every

point (x,y) except the origin. Thus the spirals are the orbits of all points,

and not merely of a point (a,0) on the x-axis.

Differentiating (1), we obtain

dx = cx - y,
de de

whence

x + cy
dx cx - y

Thus the continuous spiral similarity leaving the origin invariant has for

its orbits (or stream lines) the solutions of this differential equation.

When c = 0 the similarity is simply a rotation and the orbits are concentric

circles. When c is infinite the similarity is a dilatation and the orbits

6



are straight lines through the origin.

Another approach to the construction of invariant points applies simul-

taneously to the two similarities, one direct and the other opposite, that

transform A into A', and B into B', where A'B' = pAB and p 1.

Let points A
1

and A
2

divide the segment AA' internally and externally

in the ratio l41, so that AlA' = pAA1 with Al between A and A', and

A2A' = pA2A with A2 outside the segment AA'. The circle with diameter

A
1
A
2

, called a circle of Apollonius, is the locus of all points X such

that XA' = pX.A. If a similarity sending A to A' and B to B' has an

iavariant point 0, then, since OX' = PDX, 0 must lie on this circle.

The two points of intersection of this circle and the analogous circle of

Apollonius for BB' are therefore the only possibilities for the invariant

points of the two similarities. Since the direct similarity has a unique

invariant point, which is one of the two, the other must be invariant for the

opposite similarity.

Having established tho existence of an invariant point, we can easily see

how it must behave and so deduce a construction for it. If an opposite simi-

larity S with invariant point 0 has ratio of magnification p, its

product with the central dilatation 0(1/0 is an opposite isometry leaving

0 invariant, that is, the reflection in a line n through 0. Therefore S
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itself is a dilative reflection: the product of 0(p) and the reflection in

n. In the rotation of the figure above, the mirror n, reflecting the ray

OA into OA', is the internal bisector of LAOA' and thus passes through the

point A
1

that divides AA' in the ratio OA:OA', which is 1:p. Similarly,

the line m through 0, perpendicular to n, is the external bisector of

LAOA' and passes through A
2

. (Since the product of reflections in n and

m is the half-turn 0(-1), the dilative reflection is not only the product of

OW and the reflection in n, but equally well the product of 0(-) and

the reflection in m.) There is nothing special about A: for 222 point on

neither n nor m, the segment joining it to its image is bisected internally

by n, and externally by m, in the ratio 1:p. Hence, the "axes" n and m

of the dilative reflection that takes the point pair AB to A'B' are simply

the lines A
1
B
1

and A
2
B
22

and the invariant point 0 is their point of

intersection. Incidentally, these lines, being the internal and external bi-

sectors of the same angle, are perpendicular. Using them as coordinate axes,

we deduce that 2.22.2222LIE similarity can be expressed as

x = px, Y' = -11Y.

This completes our classification of the similarities of the plane and we have

as our theorerw Any direct similarity is either a translation or a dilative

rotation, and any opposite similarity is either a glide reflection or a dila-

tive reflection.

When we go into three dimensions the situation is closely analogous. In-

stead of comparing two congruent or similar triangles we naturally compare con-

gruent or similar tetrahedra. Taking one vertex at a time, we can see that any

two congruent tetrahedra are related by an isometry which is the product of at

most four reflections. Of course, if they are directly congruent we need two

or four reflections and if they are oppositely congruent we need one or three

8



reflections. If one point is invariant we need one fewer reflections and, in

particular, a direct isometry with an invariant point is the product of two

reflections whose mirrors contain that point. Two planes through a point meet

in a line, so the only direct isometries with an invariant point are the rota-

tions about axes through that point. This is a famous theorem of Euler which

can be rephrased as: any orthogonal transformation with positive determinant

is a rotation.

[BY analyzing the products of reflections in two, three, or four mirrors

the lecturer classified all isometries of Euclidean space. In particular, he

showed that every direct isometry is the product of two half-turns and that if

the axes of these half-turns are skew lines then the isometry is a twist (screw

displacement). See Chapter 7 of Introduction to Geometry for the details.]

So much for isometries, naw what about similarities? The following con-

struction for an invariant point has been proposed by my former colleague at

Toronto, Dr. Maria J. Wonenburger. If S is a similarity sending A to A',

with ratio of magnification p 1, then choose Q such that QA' = pQA if

S is direct or such that QA' = -pQA if S is opposite. Let D denote the

central dilatation with center Q and ratio ± l/p, plus or minus according

as S is direct or opposite. The product SD is a direct isometry leaving

A invariant and is therefole a rothtion about a line, a, through A. Let

a be the plane through Q and perpendicular to this line a. Both SD and

D leave the plane a invariant; hence S = (SD)(D
-1

) does too. The restric-

tion of S to ce is a two-dimensional similarity which by our previous dis-

cussion has a fixed point 0 (since we are assuming p 1). But then

S°0(il/p) is a direct isometry leaving 0 and invariant, that is, a

rotation R about the line through 0 perpendicular to u. We conclude that

9



S is a dilative rotation: the product of the rotation R and the central

dilatation O(ip). Thus ara similarity of space which is not an isometry is a

dilative rotation. The classification of similarities in space is therefore

slightly simpler than in the plane, for there are only three types: transla-

tions, glide reflections, and dilative rotations. You can split this list up

in various ways according to the value of p and the amount of rotation. (See

the table tin page 102 of Introduction to Geometry.)

The direct dilative rotation, R.0(1j,) with p >0, like its two-dimen-

sional counterpart, can be regarded as operating continuously. The orbit of

a point of general position is now a concho-spiral: a curve on a cone which

outs all of the generators at the same angle. This is the curve one reads

about in Sir D'Arcy Thowson's book, On Growth and Form, in connection with

the growth of shells, for each little section of the shell is similar to the

section before it.

Discussion.

Johnson explained another way of classifying isometries in terms of the

three fundamental types, rotations,

reflections, and translations. In the

schematic diagram, each of the three

isometries in the outer ring is a

commutative product of the isometries

in the two adjacent inner regions. He

also pointed out that there are

obvious generalizations to n-dimension-

4,1ato

rotatory rofIoLtiono

rotationa reflection

tranolation
glide
reflection
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al Euclidean space, e.g., every isometry of EI:1 is the product of at most

n+1 reflections and every direct isometry is the product of at most [n/2]

rotations and perhaps one translation.

Chakerian asked about the representation of direct isometries (displace-

ments) as products of twists in higher dimensions. Coxeter replied that the

analog of a twist in higher dimensions is the product of a translation and a

displacement leaving a point fixed, which in higher dimensions is not as simple

as a rotation. For example, in four or five dimensions the displacements

leaving a point fixed are "double rotations," so even here a twist is consider-

ably more complicated than in three dimensions. Coxeter and Gleason commented

on the fact that any displacement with a fixed point can be represented as a

product of rotations whose planes of rotation are mutually perpendicular.

The relevance of the principle of contraction mappings (any mapping of a

complete metric space into itself which contracts distances has a unique fixed

point) to the problem of finding the fixed point of a similarity was brought

out by Yale. A proof of the existence and uniqueness of the invariant point of

a similarity using this type of argument appears on page 103 of Introduction

to Geometry. Gleason asked if the proof presented by Coxeter in this lecture

applied to spaces over subfields of the reels, especially to the rational field,

or if some appeal to solving quadratic equations or to completeness was neces-

sary. After reexamining the constructions, Coxeter and Gleason agreed that

they were "linear" constructions valid for any base field of odd characteristic

and that the induction step for progressing from two to three dimensions is

valid in general.

A discussion of various pedagogical principles involving transformations

was triggered by Prenowitz's observation that Coxeter began his lecture with a

comment that spatial geometry was easier than planar for kindergarten children
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and ended with a demonstration that similarities were easier to classify in

space than in the plane. Gleason remarked that experimental evidence shows

that similarity by dilatation is recognized much more readily by younger

children than is similarity involving a rotation. Benson and Kelly advocated

defining transformations for small subsets of space before defining them for

the entire space.

Steenrod outlined a method to study the geometric structure (as a cellular

complex) of the orthogonal group, 0(n). Define a map from 0(n) to the

sphere S
n-1

of dimension n-1 by choosing a base point x
0

in S
n-1

and

then sending each element r of 0(n) to the image of x
0

under r. This

is a fibration of 0(n) whose basic fiber is 0(n-1) (the subgroup of 0(n)

leaving x
0

fixed). The inverse image of any point in
5n-1

is the coset of

0(n-1) sending xo to that point. Suppose now that we have worked out the

cellular structure of 0(n-1), i.e., we have the cellular structure of the

basic fiber, and we want to know how to extend this to the cellular structure of

the entire space 0(n). The standard procedure is to consider for any point of

the sphere the reflection in its orthogonal plane. This defines a mapping of

n-1
into 0(n) whose range is the set of reflections. Sinc' antipodal points

yield the sam reflection, the range is like Pw.l. This projective (n-l)-space

intersects 0(n-1) inductively in Pn_21 The difference, P
n-l/Pn-22

between

P
n-1

and P
n-22

is just an (n-1)-zell, so we have an (n-1)-cell, a, of

reflections determined in this fashion, hanging onto O(n-1). We form the

product of a with 0(n-l). This maps onto 0(n) and, except for certain well-

recognized singularities, is one to one on the open cells of highest dimension.

This yields the cellular structure of 0(n) directly and froA this one can

work out such things as its homology groups.

12
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Lecture II. The Real Affine Plane: The mom of affinities

Today I will consider the real affine plane which perhaps most simply can

be thought of as the kind of plane that was described yesterday by Walter

Prenowitz in terms of join and extension, together with the three additional

axioms: 1. (Intermediacy) If three points lie on a line then one lies

between the other two. 2. (Dedekind's axiom of continuity, in terms of

order) For every artition of all point on a line into two non-empty sets

such that no point of either set lies between two points of the other, there

is a point in one set which lies between all of the remaining points of that

set and all points of the other set. We define parallelism in a way that makes

the statement of the third additional axiom much simpler. Two lines may have

no common point, or one common point, or more than one common point. In the

last case they coincide entirely. In the first and last cases they are said to

be parallel. 3. (Playfair's axiom) For .22.2291.11 A and anz line m, there

is a unique line thsclu.th A and karallel to m. (If the point A is on m

then this parallel is just m itself.)

Since we are assuming that for any three points on a line one point is

between the other two, everything could be expressed in terms of intermediacy,

e.g., we could define a line segment to be the set of points between two given

points. Thus we can define an affine transformation or affinity as a one to

one transformation of the plane onto itself which preserves intermediacy.

Since we are assuming continuity, it is possible to develop barycentric coordi-

nates and show that aaix two triangles ABC and A'B'C' are related by a

unique affinity sending each point P to that point P' whose barycentric

coordinates with respect to triangle AIBIC' are the same as that of P with

respect to triangle ABC. In particular, the only affinity leaving a11 three

13



vertices of a triangle invariant is the identity.

The unique affinity carrying triangle ABC to triangle ACB is called an

affine reflection. A convenient symbol for this transformation is A(BC),

reminding us that A is invariant while B and C are interchanged. The

reflection A(BC) has a mirror, the median from A, all of whose points are

invariant. A(BC) can be described as the reflection through that mirror in

the direction of line BC. If A(BC) sends P to P', then the lines PP'

and BC are parallel, and the lines PB and P'C' meet on the mirror, If

M is on the mirror but not on PP', the symbol M(PP') has the same meaning

as A(BC). In this sense, our symbol for an affine reflection is not unique.

Affinities preserve ratios of areas, and by the usual conventions the

area of triangle ACB is the negative of the area of triangle ABC. Thus an

affine reflection reverses the sign of every area and the product a an even

number of affine reflections preserves area. A transformation preserving area

(in magnitude and sign) is called an 2aulannity, or (Veblen and Young) an

equiaffine collineatien.

Another important case of an affinity is a dilatation. Among the affini-

ties, which map parallel lines to parallel lines, the dilatations are those

that transform each line m into a line m' parallel to m. Among the dilata-

tions we distinguish those with no invariant point, translations, from those

with (at least) one invariant point, the central dilatations, exactly as in

Euclidean geometry. We shall again use the symbol O(i) for the central

dilatation with center 0 and ratio of magnification 11, p being a non-zero

real number. Then 0(1) is the identity and 0(-1) is the half-turn about

the pole 0. We can describe 0(-1) in terms of a parallelogram ABCD whose

diagonals meet at 0 as that affinity interchanging A and C as well as
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B and D. Note that the affine reflection A(BC) and the half-turn A(-1)

agree on the line through A parallel to BC.

Veblen and Young [Vol. 2, p. 118] gave a table of the important normal

subgroups of the group of affinities. Part of their table, with an error

corrected, is as follows:

Affinities

Direct Affinities
Products uf
Reflections

Dilatations
Equiaffinities

Translations and Half-turns

Translations

Before proving that every equiaffinity is the product of two reflections,

let us investigate the possible numbers of invariant points for an affinity.

Since an affinity is determined by its effect on a triangle, the only affinity

leaving three non-collinear points invariant is the identity. Since ratios of

lengths along a line are preserved, any affinity that leaves invariant two

distinct points, X and N, leaves invariant every point on the line MN.

If it transforms a point P not on this line into the point PI, two cases

arise according as PP' is or is not parallel to MN.

If PP' is parallel to MN, every point (not on MN) is displaced

along a line parallel to MN by an amount proportional to its distance from

MN, and the affinity is called a shear. For example) if the point Q is
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on the line MP (as in the adjacent

figure), then Q' is the intersection

of the line MP and the line through

Q parallel to MN. It is as if a rub-

ber sheet fixed along MN were pulled

one way on one side of MN and the opposite way on the other side. If the

line MN is the x-axis of an affine coordinate system, then the coordinate

form of this shear is x' = x + py, y' = y. If, on the other hand, PP' is

not parallel to the line MN of invariant points, then the line PQ parallel

to MN is transformed into P'Q' also parallel to MN. Since the lines PP'

and QQ1 are left invariant, they

are either parallel or meet in a

point on MN, say M. The latter

possibility is ruled out since

the only affinity relating the

homothetic triangles MPQ and

MP'Q' is a dilatation for which M is the only invariant point. Hence PP'

QQ' must be parallel. Thus any line parallel to PP' is invariant and the

affinity is a strain in the direction of PP' leaving invariant all points on

MN. If the line MN is the x-axis and the line PP' is the y-axis of an

affine coordinate system, then the equations for this strain are x' = x,

Y' = PY.

To sum up, every affinity with more than one invariant point is either a

shear (which reduces to the identity if p = 0) or a strain (which reduces to

a reflection if p = -1). Shears and strains, like dilatations, admit a

pencil of invariant lines, one through every non-invariant point. Conversely,
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although we shall not go into the details of the pioof here, any affinity with

a pencil of parallel or concurrent invariant lines must be a shear, strain, or

dilatation. As a corollary of this, any equiaffinity admitting a pencil of

parallel or concurrent invariant lines must be a shear, translation, or half-

turn.

With these results we are now ready to present a slightly streamlined

version of Veblen's proof that every equiaffinity is the product of two affine

reflections. We first dispose of the easy cases, in which there is a pencil of

invariant lines.

The translation sending A to B is the product of the affine reflections

A(CE) and C(AB), where C and D are so chosen that ABCD is a parallelo-

gram. Using the same parallelogram we can see that a half-turn, interchanging

A and C say, is A(BD) followed by B(AC). The shear sending A to B

and leaving imvariant all points on the line through C parallel to AB is the

product of C(AE) and C(EB), where

E is the midpoint of AB (or any

other point, except A and B, on

the line AB). As me observed earlier,

both C(AE) and C(EB) agree with

C(-1) on the line through C parallel

to AB; hence their product leaves

invariant every point on this line.

In the case of an equiaffinity with no pencil of invariant lines, there

is always a triangle ABC such that A is transformed into B, and B into

C. Now suppose the given equiaffinity takes triangle ABC to BCD. We may

have D== A, but even if not we must have area(ABC) = area(BCD) = area(DBC),
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since area is preserved both by the given equiaffinity and by the equiaffinity

that cyclically permutes the vertices of a triangle. Since triangles ABC

and DBC have the same area and a common "base" BC, it follows that D

lies on the line through A parallel to BC. Let M be the midpoint of AD

(or if A and D coincide, let M coincide with them). Then the given

affinity is the product

M(BC) C(BD) 2

which clearly takes A to B2 B to C2 and C to D. This completes the

proof that any equiaffinity is the product of two affine reflections. As an

immediate corollary we see that any product of reflections can be reduced to

the product of two or three reflections, and any affinity to the product of

two or three reflections and a dilatation.

Until two weeks ago, I thought the complete classification of equiaffini-

ties might be a rather awkward problem, but then (while sitting on a bench in

Leicester Square, London) I saw something very simple which I should have

thought of long ago, namely: given any triangle ABC, the various kinds of

equiaffinity ABC -4 BCD correspond to the various positions for D on the

line through A parallel to BC, and thus correspond to the various values

of the ratio

ADx
BC 2

an affine invariant which may be positive, zero (when D coincides with A),

or negative.

For any equiaffinity S2 the successive iterates of any non-invariant

point A may be regarded as the vertices of a (finite or infinite) polygon

ABCD..., including, as trivial cases, the apeirogon (00), which arises when

S is a translation or a shear, and digon (2)2 which arises when S is a
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half-turn so that C coincides with A. Such a polygon ABCD... is said to be

affinely regular because it is transformed into itself not only by S, which

generates a cyclic group, but by the two affine reflections M(BC) and C(BD),

which generate a dihedral group, the complete symmetry group of the polygon.

These two generating reflections, whose product is S, permute the vertices

according to the permutations (BC) (AD)... and (BD)(AE)..., whose product is

(ABCDE...). Thus m, the mirror for M(BC), bisects the side BC and also

bisects a family of parallel diagonals beginning with AD; and n, the mirror

for C(BD), bisects a family of parallel diagonals beginning with BD and AE.

By considering the special case when X = 0, so that D coincides with

C, we see that any triangle ABC is an affinely regular polygon with reflec-

tions A(BC) and C(BA). Any parallelogram ABCD with center 0 is affinely

regular with reflections 0(BC) and C(BD). A pentagon is affinely regular

if and only if each diagonal is parallel to a corresponding side.

M
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Remember that in affine geometry, although we cannot distinguish between

circles and ellipses, we can distinguish between ellipses (which are closed),

parabolas (whose diameters are parallel), and hyperbolas (which have asymptotes).

Since lines joining midpoints of parallel chords of any conic are diameters, the

conic through. A, B, C with diameters m and n must pass through D (Which

is the other end of the chord through A parallel to BC), through E (on

the chord through A parallel to BD), and so on. We see in this manner that

,every affinely regular polygon is inscribed in a conic, possibly degenerating

into a pair of parallel lines.

We can now distinguish five cases, depending on various possibilities for

the values of the real

number X = AD/BC, If

X > 3 the diameters m

and n meet in a point 0

on the far side of theBC
line BC from A, and

the polygon ABCD..., being

inscribed in one branch of

a hyperbola (with center 0)
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is naturally called a hyper,-

bolic polygon. It is, of

course, infinite. Accord-

ingly, Nge call the equi-

affinities with X > 3

hyperbolic rotations. If

X = 3 the diameters m

and n are parallel, and

ABCD..., being inscribed in a parabola, is again infinite. We call it a

parabolic polygon and call the equiaffinity a parabolic rotation.

In the case -1 < X < 3 the two mirrors meet in a point 0 on the same

side of BC as A, and

the conic with center 0

through A, B, and C is

an ellipse. The affinely

regular polygon ABU)...

is inscribed in this ellipse,

so we call it an elliatic

polygon and call the equi-

affinity an elliptic

rotation. Since the only

affinely regular polygons

that close are elliptic

polygons, the elliptic rotations include all possible non-involutory equi-

affinities of finite period. In particular, an equiaffinity is of period

three if and only if X = 0.

Let me defer for the moment the case X = 1, since it is the most
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r"

amusing one, and consider

the one remaining case,

X < -1. As we see in the

adjacent figure, the conic

is again a hyperbola, but

now A and C are on one

branch and B and D on

the other. Thus the succes-

sive transforms of A lie alternately on the two branches of this hyperbola

with ACE.., progressing in one direction and BDF... in the other. For lack

of a better name I call the equiaffinity a crossed hyperbolic rotation and the

affinely regular polygon ABCD... a crossed hyperbolic polygon.

The equiaffinites in the interesting critical case, X = -1, between

elliptic and crossed hyperbolic rotations, I call focal rotations (following

the suggestion of someone in the audience when I spoke last week to the

London Mathematical Society). In this case ADBC is a parallelogram, M(BC)

interchanges the two sides BD and AC, and C(BD) leaves the lines BD
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and AC invariant. Thus the figure formed by the two lines AC and BD is

invariant and the successive transforms of A lie alternately on these two

lines. The midpoint, Fl, of AB and the midpoint, F
2'

of BC are inter-

changed by the focal rotation and serve as the two "foci" for the focal poly-

gon ABCD... as indicated in the diagram.

To sum up, the equiaffinities, other than translations, half-turns, and

shears, may be classified into the follawing types:

X > 3 X = 3 -1 < X < 3 X = X < -1

Hyperbolic Parabolic Elliptic Focal Crossed Hyperbolic

For completeness we should now go on to the classification of products

of three affine reflections, or, more generally, to general affinities. The

conclusion seems to be that, apart from the affine counterparts of the dilative

rotation and dilative reflection, the only affinities are such as can be ex-

pressed in suitable coordinates in the form x' = px, y' = vy for all real,

non-zero, values of p and v. Such an affinity is of course direct or oppo-

site according as the product [Iv is positive or negative. I would like a

synthetic proof that the general affinity is this kind of double strain.

Discussion.

In reply to a question by Klamkin, Coxeter elaborated as follows on the

condition for an elliptic rotation to have a finite period. In terms of affine

coordinates, we can take the vertices of an elliptic polygon ABCD... to be

(1,0), (cos 0, sin 0), (cos 20, sin 20),

on the ellipse x
2
+ y 1. Then the elliptic totation is

(cos 30, sin 30)

(2) X ' = X cos 0 - y sin 0, y' = x sin 0 y cos 0,
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and

sin 30 3 - 4 sin
2
e

2 cos 0 + 1,
s n 20 - sin 0 2 cos 0 - 1

in agreement with our inequality -1 < X < 3. The polygon closes if and only

if 0 is commensurable with Tr, say e = 217/p where p is a rational

number greater than 2. If p = n/d, where n and d are coprime integers,

we have an affinely regular n-gon of density d, that is, a polygon [0.

In this notation, (3) is a triangle (of any shape), (41 is a parallelogram

(given by X = 1), (51 is an affinely regular pentagon (X = T-1 + 1 = T1

where T is the "golden section" number i4i3 + 1)), and (5/23 is an

affinely regular pentagram (X = T
-1

+ 1 = -T
-1

) which forms, with its five

lines of symmetry, the arrangement of points and lines described by GrUnbadm

as existing in the real plane but not in the rational plane (because T is

irrational).

Similarly, the vertices of a parabolic polygon ABCD... may be expressed

as

(0,0), (1,1), (2,4), (3,9) ,...

on the parabola y = x
2

The parabolic rotation is

and, of course,

xl = x + 1, y' = 2x + y + 1

9 - 0 3 - 0 1

' 4 - 1 2 - 1

The hyperbolic polygon (X > 3) may be either treated like the elliptic

polygon, using hyperbolic functions instead of circular functions and taking

the hyperbola to be x2 - y
2
= 1, or else referred to the asymptotes as co-

ordinate axes so that the vertices are

(1,1), (et,e-t), (e
2t

,e
-2t

), (e
3t

,e
t

on the hyperbola xy = 1. Then the hyperbolic rotation is
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e
3t

- e
2t

+ e
t
+ 1

X - 2 cosh t + 1 > 3.

e
2t

- e
t

e
t

Being the product of the two simple strains

and

x = e
t
x,

yt = e
-t

y,

this equiaffinity could be called a "double strain" with comreusating ratios.

By regarding the indefinite quadratic form xy (or x
2

- y
2
) as the metric

form for a two-dimensional Minkowskian space, we could also call this hyper-

bolic rotation a Lorentz transformation.

Someone asked whether the "even spacing" of the vertices of an elliptic

polygon on its ellipse is determined by equal areas swept out, as in Kepler's

rule for a planetary orbit. Coxeter replied that -ocal properties of conics

belong to Euclidean geometry, not to affine. However, if we use the center

instead of a focus, it is true. Since the vertices are permuted by an equi-

affinity, the triangles AOB, BOC, COD,.., all have the same area, and so do

the corresponding sectors of the conic. This holds also for a hyperbolic

polygon on its hyperbola. Subtracting each triangle from the corresponding

sector of the ellipse, or vice versa for the hyperbola, we deduce that the

"segments" bounded by the arcs and their chords all have the same area. This

holds for a parabolic polygon on its parabola.

Gleason observed that the square of a focal rotation is a shear whose

invariant points include the two foci (which are interchanged by the focal

rotation itself). This follows from the expression of the focal rotation

(4)
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Ar.,.

as the commutative product of the shear

x' = x + y,

and the half-turn

(5) Xl =

yp =

yl = -y,

In this system of affine coordinates, the focal polygon has vertices

(0,1), (-1,-1), (2,1), (-3,-1), (4,1) 2

and the two foci are (4,0) .

Similarly, the crossed hyperbolic rotation

= -e
t

x x,'
' = -e-ty y

is the commutative product of the ordinary hyperbolic rotation (3) and the half-

turn (5). Its square is the ordinary hyperbolic rotation

x = e
2t

x,
-2ty.

Killgrove asked whether there are any intrinsic reasons for the peculiar

nature of a focal rotation: the only equiaffinity (without a pencil of invari-

ant lines) in which the successive transforms of a general point do not lie on

a proper conic. Coxeter replied that perhaps in part the reason for this was

that we had arranged matters so that ABC was a triangle, thus excluding the

digon.

There is an affinely regular star polygon (2 + 1/d) for d = 2,3,4,

which may be regarded as approximating the digon (2j when d tends to in-

finity. The number

2r 2du
X = 2 cos 8 + 1, where 8

2 + l/d 2d + 1 '

approaches 2 cos u + 1 = -1, which is the value for the focal polygon.

Writing ex for x (and ex' for x') in the expression (2) for an elliptic

rotation, we obtain

sin 0
x' = x cos 0 - y- 2

y' = ex sin 0 + y cos 0.
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Choosing e = n/(2d + 1), so that e = r - e, and then racking e tend to

ze.co, we see that the focal rotation (4) can indeed be regarded as a limiting

case of the elliptic rotation.

Coxeter and Gleason discussed the similarity of the orbits of different

points for a given equiaffinity. They finally agreed that the orbits of two

different points on the same conic, being affinely regular polygons of the same

type inscribed in this conic, are relIted by an elliptic, parabolic, or hyper-

bolic rotation according as the conic is an ellipse, parabola, or hyperbola,

and that two different conics for the same equiaffinity are related by a

dilatation.

Yale considered the mapping that sends each affinity (leaving the origin

invariant) to its determinant. He observed that, since this mapping is a

homomorphism into the multiplicative group of non-zero reals, there are infi-

nitely many unpleasant normal subgr11;9s of the group of affinities, so lieblen's

table is by no means a table of all normal subgroups.

Prenawitz focused attention on the possibility of developing a geometric

definition of the determinant using the concept of equal area or equal volume

in terms of products of an even number of rPflections. Coxeter recommended

Veblen's treatment of signed area as a good starting point for this. Gleason

pointed out that the question (for arbitrary fields) amounts to whether or not

the orbits of triangles (with respect to the group of products of even numbers

of reflections) are in a natural one to one correspondence with the non-zero

scalars. Everyone agreed that this is probably the situation, and the discus-

sion closed with someone calling attention to the treatment of determinants in

Artin's Geometric Alpbra, a treatment which uses in place of affine reflec-

tions the fact that the equiaffine group is generated by shears (transvections).
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Lecture III. Pro'ective Geometry: The group of collineations and correlations.

I view the general projective plane as the best example of a simple and

yet significant axiom system which can be developed without getting too involv-

ed in complications. I would not recommend using a complete set of axioms for

Euclidean geometry in high school, for instance, but I would rather develop it

informally. I think as an exercise in the use of axioms and rigid deductions

there is nothing better than the general projective plane, because the axioms

are so simple and the deductions fairly straightforward. The axioms I would

use are that each two points determine a line, each two lines determine a point,

and that there exist four points no three of which are collinear (a complete

quadrangle). For most purposes I would like to include that the three diagonal

points of a complete quadrangle are not collinear. Finally, I would assume

what Veblen calls "Proposition P," which says that if a one-dimensional pro-

jectivity leaves three points invariant it is the identity. Of course this

would require a preliminary discussion of what is meant by a projectivity.

That can be done quite simply in terms of the following obvious ideas.

I would begin by defining an elementary correspondence as the natural

28

relation between a pencil of lines,

lines through one point 0, and a

range of points, which is the section

of that pencil by a line o not

through O. Thus I would say that

each line p through 0 corresponds

to a point P on o (and vice versa)

if they are related as in the adjacent

figure.



Following von Staudt, I would write p P or P p. Follawing Poncelet,

I would call any product of elementary correspondences a projectivity. This

could relate a range to a range, a range to a pencil, a pencil to a pencil, or

a pencil to a range. A particularly important case is the product of exactly

two elementary correspondences. This special kind of projectivity, relating a

range to a range or a pencil to a pencil, is called a perspectivity. Following

Veblen,Iwould combine the symbols px.P.A-p' or Pxpxl" to p7 p'

or P = P', respectively. In the case of a perspectivity relating the ranges
A

ABCD and A'B'C'D'... via the

pencil of lines through 0, it is

convenient to write

0
ABCD.. = A'B'C'D'... .

A

A similar convention is used for a

perspectivity between two pencils.

In the case of a product of more than

two elementary correspondences, we

revert to the original symbol .17,

since it is inconvenient to pile up the bars. But the double bar is often

useful in distinguishing the special case of a perspectivity.

With several perspectivities we can of course go from one range to another,

again and again, and eventually come back to a "new" range on the same line as

the original range. This correspondence between "superimposed" ranges is the

one-dimensional projectivity which appears in the last of the axioms, Proposi-

tion P.

As an illustration of the use of the symbols -4 and 7, I would like to

present von Staudt's important theorem that, given four points on a line,
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there is a projectivity that inter-

changes them in pairs; that is, if

A, B, C, D are any four collinear

points, ABCD DCBA. (In this nota-

tion, the transpositions are (AD)

and (BC)0 An easily remembered

proof is obtained by having the

adjacent symmetric figure and then

using perspectivities from the three

outer vertices to "rotate" the ranges

on the "inner" lines. Thus if we

label the extra points as indicated,

A
ABCD HBIF = ECIG E DCBA

A A

The final axiom, "Proposition p,u supplies the only difficult step in

proving the fundamental theorem, which tells us that a projectivity is complete-

ly determined by its effect on three points of a range (or on three lines of a

pencil). From this it follows that a projectivity relating ranges on two

distinct lines must be a perspectivity if it leaves the point of intersection

invariant. Since we shall make use of this result later, let us refer to it

as the lemma.

Two of the most famous theorems of projective geometry are those of Pappus

and Desargues. Both are sometimes taken as axioms, but not in the same treat-

ment, because the former implies the latter, though the complete deduction is

difficult. The deduction of the fundamental theorem from them is difficult too.

Accordingly I recommend (in a first course) taking "Proposition P" as an

axiom, deducing the lemma, and continuing as follows.
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.NIVII MEMO 11

Let A, B, C be three points

on one line and A', B', C' three

points on another. "Cross join"

them, B to C' and C to B',

A to C' and C to A', A to

B' and B to A', and let

L, M, N be the three points of

intersection of these three pairs

of cross joins. Pappus' theorem

asserts that L, M, and N are collinear. The proof of this is easy as soon as

we have defined three new points: 0, where AB meets A'B', J, where AB'

meets A'C, and K, where AC' meets B'C (as in the figure above). Using

the lemma, we see that the product of perspectivities

ANJB'
A'

ABCO
C'

KLCB',

being a projectivity ANJB' KLCB that leaves B' invariant, must be a

perspectivity. The center of this perspectivity must be at M, the point in

which AK and CJ meet; hence L, M, N are collinear.

Until a very few years ago I was not aware that there is a closely

analogous proof of the companion theorem of Desargues. Someone pointed out to

me that this proof appears in very small type at the end of one of the chapters

of van der Waerden's EinfUhrung in die algebraische Geometrie.

The theorem asserts that if PQR and 1"Q'R' are two triangles perspec-

tive from a point 0 then the intersections, D,E,F, of corresponding sides

of the two triangles are collinear. If (as in the figure below) the point 0

is not on the line DF, we introduce three new points, X,Y,Z, the inter-.
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sections of the line DF with the three lines PP', QQ', RR' (which all pass

through 0).

The product of perspectivities

OPXP' 7 OQYQ' ORZR'

is a projectivity OPXP' ORZR' leaving 0 invariant; hence, by the lemma,

it must be a perspectivity. Since PR and P'R' meet in E, E must be the

center of the perspectivity, and therefore E is on the line XZ which is DF.

This proof evidently breaks down if 0 lies on DF (as in the figure

below). Let us modify it so as to avoid such complications. We notice that
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Desargues' theorem is not essentially altered if we make any permutation of

the letters P, Q, R, along with the corresponding permutations of P', Q', R'

and of D, E, F; nor is it altered if we simultaneously interchange P and P',

Q and Q', R. and R'. Since the triangles PQR and P'Q'R' cannot be so

mixed up that each is inscribed in the other (P' on QR, Q' on RP, R' on

PQ, P on Q'R', Q on R'P', and R on P'Q'), we may assume, without loss

of generality, these two perspective triangles to be so named that Q does not

lie on R'P'. We can now adapt van der Waerden's proof by applying it to the

two triangles POR and FQ'D, which are perspective from Q. The details are

as follaws. We introduce three new points U, V, W, the intersections of R'P'

with the three lines PF, OQ', RD (Which all pass through Q).

The product of perspectivities

P' R'
QPUF QOVQ' QRWD

is a projectivity QPUF QRWD leaving Q invariant; hence it must be a

perspectivity. Since PR and UW meet in E, E must be the center of the

perspectivity, and therefore E is on the line FD. This completes the proof.

Now we go on to discuss collineations and the two-dimensional analog of

the fundamental theorem which asserts (as we remarked before) that a projectiv-

ity is determined by its effect on three collinear points. A collineation is a

one-to-one transformation of points to points and lines to lines that preserves

incidence. We single out the particular collineations in which the correspond-

ence induced on one range is a projectivity. Of course, any collineation re-

lates a range of points to a range of points, but in the general projective

plane you cannot be sure that this correspondence is a projectivity. If we

assume the correspondence is projective for one range then we can show it is

projective for all ranges. The two-dimensional analog of the fundamental
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theorem is that a projective collineation is completely determined by its

effect on a complete quadrangle. (For details of the proofs of the existence

and uniqueness of a projective collineation transforming one complete quad-

rangle to another, see pp. 50-52 of my book Pro ective Geometry.)

Projective geometry, in contrast to all the other geometries that we are

discussing, admits a principle of duality: the possibility of interchanging

points and lines consistently in any valid proposition to yield another valid

proposition, the dual. This is justified by the fact that the axioms imply

their duals.

The dual figure to a complete quadrangle (a set of four points, no three

collinear) is a complete quadrilateral (a set of four lines, no three con-

current). Just as Proposition P implies that there is exactly one projective

collineation transforming a given complete quadrangle into another, so also

does it imply that there is exactly one projective correlation transforming a

given quadrangle into a given quadrilateral (see pp. 57-59 of Projective

Geometsz). A correlation is a one-to-one transformation of points to lines and

lines to points that preserves incidence, and a projective correlation is a

correlation in which the induced correspondence between one range and one

pencil is projective.

Before leaving the subject of collineations I should perhaps have mention,-

ed the important particular case of perspective collineations. A perspective

collineation is one in which there is a line (the axis) all of whose points are

left invariant. Since the identity is a trivial projectivity, a perspective

collineation is certainly a special case of a projective collineation. A

perspective collineation also has the dual property that all the lines through

one point are left invariant, that is, a perspective collineation always has a
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center as well as an axis. If the center is on the axis the perspective collin-

eation is called an elation; if the center is off the axis then it is called a

homology. (See the discussion for the history of these two terms.)

A homology can have any period (for suitable fields). There is a nice

theorem which says that a projective collineation of period two must be a

harmonic homology, taking each point to its harmonic conjugate with respect to

the center and axis. (Since we've assumed the diagonal points of a complete

quadrangle are not collinear, harmonic conjugates are well defined.)

After considering projective collineations of period two it's natural to

ask about projective correlations of period two. A projective correlation of

period two is called a polarity. This is a transformation of points to lines

and lines to points with the special feature that, when the capital of any

letter is used for a point, the corresponding lower case letter can be used for

the corresponding line without any risk of confusion, as the correspondence goes

both ways round: P is transformed into p, and p is transformed into P.

We speak of p as the polar, of P, and P as the pole of p. Any point on

p is said to be conjugate to P; any line through P is said to be conjugate

to p.

For every polarity there is at least one point A that is not self-

conjugate, ie., that is not on its own polar a. Given such a point, we can

choose a point B on a that is not

self-conjugate and let C be the

point of intersection of the polars

of A and B. We have now constructed

a self-polar triangle ABC, in which

a C each vertex is the pole of the opposite

side, and therefore any two vertices
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(or sides) are conjugate.

There is a partial converse to tl-ze statement that every polarity admits a

self-polar triangle: if a projective correlation transforms the vertices of

one triangle into the respectively opposite sides, then it must be a polarity.

Since there is a unique projective correlation relating any given quad-

rangle to any given quadrilateral, it follows that a polarity is determined by

one self-polar triangle ABC, an extra point P, not on any side of ABC,

and its polar p. In other words, given any triangle ABC, a point P not

on any side, and a line p not through any vertex, the unique correlatiin

transforming the four points ABCP into the four lines abcp is a polarity.

We shall find it convenient to use the symbol (ABC)(Pp) for this polarity.

There is a nice theorem, due to Veblen, which says that every projective

collineation can be expressed as the product of two polarities. It is clear

that the group of projective collineations is generated by pairs of polarities,

but it is very interesting that each projective collineation is the product of

exactly two polarities. This theorem is in the spirit of the present course,

since the group associated with the projective plane (in the sense of Klein's

Erlangen program) is the group of collineations and correlations: every

theorem of the projective plane remains true if you apply a collineation or

correlation to all the points and lines involved in it. It is natural to
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consider the normal subgroup of collineations and then the normal subgroup of

that consisting of the projective collineations. (The lecturer presented a

proo2 that every projective collineation is the product of two polarities. We

omit it here since it is on pp. 68-70 of Pro'ective Geometry.)

A conic can be defined as the set of self-conjugate points and self-

conjugate lines in a polarity (provided this set is not empty). In other words,

a conic is the set of points that lie on their polars and of lines that pass

through their poles. This self-dual definition, due to von Staudt, seems to

MB much more convenient than Ponceletts. If at least one self-conjugate point

exists then there are many, but each line contains at most two of them (pp. 61

and 72 in Pro'ective Geomqrx).

There is a kind of stereographic projection from the points on a conic to

the points on a line. Take one

point on the conic, the pencil

of lines through it, and a section

of that pencil by an arbitrary

line. This establishes a corre-

spondence between the points on

the conic and the points on a

line, done by means of a general-

ized "perspectivity," as it were.

Using this correspondence you can easily see that the idea of projectivi-

ties on a line can be transferred onto the conic so that you can speak of a

projectivity relating the points on a line to the points on a conic, the points

on a conic to the points on another conic, or the points on a conic to the

points on the same conic. The discussion of projectivites is in some ways
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made simpler if you use a conic instead of a. line to form the range of points.

For instance, projectivities of period two, called involutions, are particularly

important but rather troublesome to deal with on a line. They are much easier

on a conic because you can show that the lines joining corresponding points of

an involution on a conic are concurrent. Thus an involution on a conic is cut

out by the pencil of lines through a fixed point (not on the conic). In fact,

the involution is induced on the conic by the harmonic homology whose center

and axis are the fixed point and its polar.

Somewhat analogously, pairs of numbers may be said to belong to an "involu-

tion" if they have a constant sum or a constant product. After assigning the

symbols 0, 1, 03 to three points on a given conic, we can define a formal sum

and product for any two points on the conic as follows. Two pairs of points on

the conic are said to have the same sum if their joining lines are concurrent

with the tangent at the point 03 Two pairs of points on the conic are said

to have the same product if their joining lines are concurrent with the line

joining co and O. Simple geometric considerations enable us to verify that

the points on the conic (other than co) satisfy all the axioms for a (commuta-

tive) field. For instance, the associative laws come from Pascal's theorem

concerning a hexagon inscribed in the conic. For the details, see Vol. 1 of

projective Geometry by Veblen and Young, or Chapter 11 of my Cambridge

University Press book The Real Pro'ective Plane. (There is no need for the

field to be real. It may even be finite, as von Staudt noticed in 1857.)

After you have the field of points on the conic you can transfer them

back to a line. I believe that this method is much easier than introducing the

field of points directly on the line. Of course this approach uses Proposition

P and therefore cannot be applied to the much more difficult problem of
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introducing coordinates into a projective plane in whi.:,h Desargues' theorem

is valid but Pappus' theorem is not. I do not believe that this more difficult

task should be attempted in an elementary course.

Discussion.

Killgrove, Coxeter, and Busemann discussed the special case of collinea-

tions of the real projective plane. Since they preserve order on a line, such

collineations are necessarily projective. Busemann pointed out that Klein

never forgave himself for an early erroneous view in which he thought an

assumption of continuity was essential for projective collineations.

Prenawitz brought up von Staudt's definition of a projectivity as a trans-

formation preserving harmonic sets, and Coxeter remarked that although this

definition and Poncelet's (given in the lecture) are equivalent in the real

projective plane, they are not e4uivalent in the general projective plane.

In reply to a question by Gleason, Coxeter said he believed that Poncelet

used the word homologies for all perspective collineations, including elations.

The Norwegian geometer Sophus Lie seems to have been the first to make this use

of the word elation. Coxeter also pointed out that we use dilatation and not

dilation for the same reason that we use rotation or notation and not rotion

or notion. In all three cases the shorter version is poor Latin.

Blattner pointed out that one needs to be careful in projective planes

with very few points on a line, for difficulties may arise in theorems or proofs

when incidences are forced because of an insufficient number of points.

Coxeter said that the projective plane over the field with five elements, i.e.,

with six points on each line, is particularly nice for illustrative purposes
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since it is just large enough to avoid any such unpleasant collapse. For

instance, Pascal's theorem (about a hexagon whose vertices lie on a conic) is

still valid in this plane; the hexagon is the conic, but otherwise everything

is as usual.

Gleason discussed an interesting theorem related to the technique Coxeter

advocated for introducing the field of scalars. In a general incidence plane,

i.e., a plane satisfying the first three axioms of this lecture but perhaps not

the axioms about the diagonal points of a quadrangle nor Proposition P, an

oval is defined as a set of points such that, for each point on the oval, every

line through that point, except one called the tangent, meets the oval once

more. If one oval satisfies Fzscal's theorem then every oval in the plane has

this property.

Yale asked about the subgroup of the group of projective collineations

generated by harmonic homologies. Coxeter replied that he believed it to be

the full group of projective collineations and that probably only three or four

harmonic homologies were needed for each projective collineation. Be also

noted that since an affine reflection is a harmonic homology whose center is on

the line at infinity, the harmonic homologies with centers on a given line

generate the projective version of the group of equiaffinities.

Klamkin stated that Desargues' theorem yields a nice construction for

the straight line through two points when we are forced to use a "too short"

straightedge and also a construction for a line through the inaccessible

point of intersection of two "nearly parallel" lines. He remarked further

that the theory of poles and polars yields nice constructions for tangents

to conics using the straightedge alone. Coxeter elaborated on the last

point by first giving the construction for the polar p of an exterior or
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interior point P, using two

Pt

1

secants through P. Then he

remarked that the tangent at

a given point Q on the conic

joins Q to the point of

intersection of the polars of

any two points on a secant

through Q. Klamkin pointed

out that the tangents through

an exterior point P join P

to the points of intersecCon

of the conic with the polar, p.

In reply to a question by Stratopoulos, Coxeter explained that this

treatment of conics in terms of polarities could be extended to a treatment of

quadrics by means of polarities in a projective space. A polarity in space is

an involutory projective correlation transforming points into planes (2212E

planes), lines into lines (polar lines), and planes into points (Eau). For

the set of points that lie on their polar planes, there are now not only two

but three possibilities. The se:: may be empty, or it may consist of the points

on a quadric surface, or it may consist of all the points in the space. In

the second case the quadric may be ruled (possessing generators, which are self-

polar lines) or non-ruled. In the third case (a null, polarity), the self-polar

lines form a linear complex,.

Finally, Stratopoulos commented on the 3patial analogs of involutions on

a conic.
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Lecture IV. Inversive Geometry: The group of homographies and antihomographies.

I shall begin this lecture on inversive geometry by using some results from

Euclidean geometry. We recall the extended sine rule of trigonometry which

tells us that BC/sin A is twice

A the circumradius, R, of any tri-

angle ABC. From an arbitrary

point D in the plane, drop per-

pendiculars to the three sides of

ABC, and let U, V, W be the

feet of these perpendiculars.

Since AD is the circumdiameter of

the triangle AWV, VW/sin A = AD.

Combining this with BC/sin A = ZR, we find BC X AD = 2R X VW. Continuing

around the triangle we obtain in a similar fashion CA.X BD = 2R x WU and

AB X CD = 2R x UV. Using the triangle inequality UV + VW UW, we combine

these to get Ptolemy's inequality

(1) AB x CD + BC x AD CA X BD.

Equality is attained when the "pedal triangle" UVW collapses to form the

Simson line (wlhich I understand is not due to Simson at all but to Wallace; I

think it was Cauchy who gave it this name, saying he thought it was the sort of

thing that Simson was quite likely to have done). Assume that D is on the

circumcircle of triangle ABC, say on the arc AC, and drop perpendiculars

as before; then the points UVW are collinear, i.e., they lie on the Simson

line of D. Combining these ideas we see that Ptolemy's inequality becomes

an equality if and only if D is on the circle through ABC and on the arc

away from B, i.e., if and only if A and C separate B and D. We use
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Vailati's notation AC II BD.

There is no difficulty in proving

that Ptolemy's inequality still

holds in the degenerate case when

ABC are collinear (so that the

"circle" ABC has infinite

radius).

If we divide both sides of equation (1) by AC x BD, we can express it as

AB x DC AD x BC
1

AC x DB AC x BD 2

or, in the notation of cross ratios (the four points still being quite arbitrary,

and the distances positive),

(AD, BC] + (AB, DC] 1.

Since equality holds if and only if AC 11 BD, we now have a definition of

separation in terms of cross ratio.

This is important for our purposes because cross ratio is an inversive

invariant. To see this, let us define inversion in a circle of radius k,

centered at 0, in the usual way,

i.e., P and P' are inverses

(of each other) if and only if

are similar, and

OP X OP' = k
2

Given two such

points, we have

OP X OP' = k
2
= OQ X OQ',

so triangles OPQ and Wro'

P'Q' OP' OP x OP' k
2

PQ OQ OP X OQ OP X OQ
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Using this you can show that if the four points PQRS are transformed by in-

version into P'Q'R'S' then the cross ratios (PQ, RS3 and (P'Q', R'S'3

are equal. Since cross ratio is an inversive invariant and sepr-ation (on a

line or circle) can be characterized by cross ratios, separation is an inversive

invariant.

If we consider three distinct points A, B, C, the circle or line deter-

mined by them consists of A, B, C, all points X such that BC j AX, all

points Y such that CA II BY, and all points Z such that AB 11 CZ. But we

have just seen that separation is an inversive invariant; hence circles (in the

extended sense of circles or lines) are inversive invariants. In other words,

circles invert into circles (or possibly lines). This seems to me to be an

efficient method of getting this basic result.

Inversion is almost a schlicht (one to one and onto) transformation of the

Euclidean plane. In other words, since points on the circle of inversion are

their own inverses, almost every point has an inverse: the only exception is

the center of the circle, which has no inverse. In order to make inversion a

schlicht transformation we invent a new kind of plane, called the inversive

plane, by postulating an ideal point, just one ideal point, which is called the

point at infinity. This extra point is the inverse of any point 0 under in-

version in any circle centered at 0. Now in talking about three points deter-

mining a circle we need not make an exception when the three points are collin-

ear; for we can view a line as a special case of a circle, namely a circle

through the point at infinity. This extension of the Euclidean plane can be

further justified by observing that the inverse (with respect to a circle

centered at 0) of a circle through 0 is a straight line, and the inverses

of points close to 0 on the circle are far away on the line, tending towards

infinity. Two parallel lines should be thought of as two circles tangent at

- ZS
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the point at infinity, for they are inverses of circles tangent at the center

of the circle of inversion.

Inversive geometry, then, is the geomtry characterized by the group gen-

erated by inversions. Just as, in Euclidean geometry, the group of similarities

has a normal subgroup of displacements leaving distance invariant, and in affine

geometry the group of affinities has a normal subgroup of equiaffinites leaving

area invariant, so in inversive geometry the group generated by inversions has

a normal subgroup consisting of homographies (or "Mlibius transformations")

leaving (directed) angles invariant. These are products of even numbers of

inversions. The products of odd numbers of inversions are called antihomo-

graphies.

Another way of viewing inversive geometry is as the geometry of circles

on a sphere in which great circles play no special role. If 0 and 01 are

antipodal points on the sphere and you project the sphere stereographically

from 0' onto the tangent plane at 0, it becomes very clear that lines should

be viewed as circles through the point at infinity, 0'.
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Orthogonality of circles is another property that is an inversive invariant.

This invariance can be deduced as a special case of the fact that angles are

preserved (or, more precisely, reversed in sign) by an inversion; but perhaps

a simpler way is the follawing. If you have two distinct circles they may

intersect (have two common points), be tangent (have one common point), or be

non-intersecting (have no common points). This classification of pairs of

circles is clearly an inversive invariant. Now if you are given three circles

tangent in pairs at three distinct points A, B, C, tht.n the circle determined

by ABC is orthogonal to each of the others. Conversely, any two orthogonal

circles can be exhibited as belonging to such an arrangement of four, e.g.,

by inversion in a circle with center C.

Thus orthogonality can be defined in terms of incidence and is thereiore an

inversive invariant, i.e., a property of inversive geometry.

Having slightly generalized the idea of a cirle so that a straight line is

a special case of a circle, we can give "inversive" definitions of sepatntion

ane inversion. Four points A, B, C, D satisfy the relation AC II BD if al-A

only if every circle through A and C intersects every circle through B

and D. The inversive definition of inversion itself, with no appeal to distance,
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is somewhat similar. Points P and P' are inverses with respect to the

circle w if they are the two points of intersection of two circles orthogonal

to w. Thus to find the inverse of a point P, draw two circles through P

orthogonal to w, and where they meet again is the inverse point.

Orthogonality leads to the subject of coaxal circles. Given two circles,

say a and p, if they intersect at P and P' then the circles orthogonal

to both a and is form a non-intersecting pencil of coaxal circles. This

family of "circles" contains one straight line: the perpendicular bisector

of PP'. It also contains two "circles of zero radiusu: the limiting points

P and P'.

(The term pencil, is consistently used for a family that contains just oae

member through each point of "general" position.)

If you then choose two circles, y and 8, in the pencil and go on to

consider the family of circles orthogonal to both y and 8, this new family

consists of all circles through the points P and P' (which are the limiting

points of the first pencil). This intersecting pencil of coaxal circles

_
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contains the line PP' and the

two original circles a and p.

Thus any two intersecting circles

or any two non-intersecting

circles determine a pencil of

circles, to which they belong,

and a second pencil consisting of

all circles orthogonal to both.

If one pencil is intersecting,

the other is non-intersecting, and vice versa. In the intermediate case,

where a and p are tangent, both pencils consist of tangent circles like

the two families of circles

touching the coordinate axes

at the origin. Each family is

called a tangent pencil oi coaxal

circles. If we invert such a

tangent pencil in a circle

centered at the point of tangency,

the circles transform into lines

parallel to the one line in the

pencil. Similarly, we invert an intersecting pencil of coaxal circles in

a circle centered at P then the circles transform into lines through the

image of P', and if we invert a non-intersecting pencil in a circle centered

at one of the limiting points the circles transform into concentric circles

whose common center is the image of the other limiting point. With this we see

that a pencil of parallel lines is a special case of a tangent pencil of coaxal
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circles, a pencil of intersecting lines is a special case of an intersecting

pencil, and a pencil of concentric circles is a special case of a non-intersect-

ing pencil.

With the exception of these three special families, each pencil of coaxal

circles contains one straight line called the radical axis of that pencil. This

line, shown in each of the three diagrams above, is the locus of centers of the

circles in the orthogonal pencil.

There is a simple construction of the radical axis of the pencil aP

(that is, of the pencil containing the circles a and p). Draw any circle y

intersecting both a and p

and let R be the point of inter-

section of the common chords

(which are the radical axes of

ay and Py). The line through

R perpendicular to the line of

centers of a and p is the

radical axis of 4. If ce and

p are non-intersecting let Q

be any point on their radical

axis and draw the tangent from Q to either a or p. The circle with center

at Q and this tangent as radius is a circle belonging to the orthogonal inter-

secting pencil, so it cuts the line of centers of a and p in the limiting

points of the pencil 4. In this way we have a simple construction for the

limiting points of a non-intersecting pencil of coaxal circles.

Another important idea is that of a mid-circle between two circles. I

must confess that I invented this name becawe I am not very fond of the classi-

cal name, "circle of antisimilitude," which I believe scares people off from
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this simple idea. A mid-circle of two circles is simply a circle that has the

effect of inverting one into the other.

Since reflection in a line is a special case of inversion, the mid-circles

of a pair of intersecting lines are their angle bisectors. Any two intersect-

ing circles may be inverted into a pair of intersecting lines, therefore any

twG intersecting circles have two mid-circles, orthogonal to each other. Given

two intersecting circles a and p, their mid-circles, which of course are in

the pencil 4, pay be constructed in the following manner. Draw radii for

a and p to one of the points

of intersection and let C
1

and

C
2

be the points in which the

angle bisectors, internal and

external, of these radii meet

the line of centers. The two

circles centered at C
1

and C
2

and through the points of intersection of a and p are the two mid-circles.

The case of intersecting circles is the only case in which there is more

than one mid-circle. Two non-intersecting circles can be inverted into
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concentric circles, and there is obviously a unique mid-circle for two concentic

circles. It is the circle concentric with them whose radius is the geometric

mean of the radii of the two given circles. The construction of the mid-circle

for two non-intersecting circleth a and 0 is rather amusing. Let y and

8 be the two circles tangent to both a and 0 at points on the line of

centers. Find the limiting points, P and P', for the pencil y8. The

circle with diameter PP' is the desired mid-circle of a and 0.

Finally, suppose you have two tangent circles. You can invert them into

parallel lines, and between two parallel lines there is a unique mid-line which

reflects one into the other. Inverting back again transforms this mid-line to

the mid-circle. The construction of the mid-circle for a pair of non-inter-

secting circles simplifies in the case of tangent circles. One of the two

circles, say y, degenerates to the first limiting point P, at the point of

tangency of a and 0. The other limiting point, V, is simply the inverse

of P in 6. The mid-circle is the circle with diameter 1°1°. Incidentally,

if u and 0 have thelr centers on the same side of their common tangent, the

radius of their mid-circle is the harmonic mean of the radii of a and 0.
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Now let us consider the rather nice problem to invert any four distinct

points A, B, A', B' into the vertices of a parallelogram in such a way that

A and A' are opposite vertices. We shall first consider this problem by

itself and then see why it is significant. We distinguish three cases, begin-

ning with two in which the points are in special position.

If AA' m BB', every circle through A and A' intersects every circle

through B and BI, and consequently the four points all lie on one circle,

say ;1. Consider two circles: a through A and A', and p through B

and B', both orthogonal to p. Let 0
1

and 0
2

be the two points of inter-

section of u and 0. Inverting in a circle centered either at 01 or 02,

say 02, sends a and to straight lines intersecting in the inverse of 01.

Before
inversion After inversion in 0

2

Since p is orthogonal to a, and 0, its inverse is orthogonal to the in-

verses of a and p and is therefore centered at their intersection. Thus

the inverses of ABA'B' form a rectangle, which is, of course, a special kind
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of parallelogram.

In the other case involving special position, the points AA'BB' still

lie on a circle p but A and A' do not separate B and 13'. Construct

a and 0 as before, and let m be their lxne of centers. Invert in a circle

centered at either of the two points, 01 and 02, in which m cuts p,

say 02. Since m and p are inverted into lines through the inverse of 0
1

1

Before inversion After inversion in 0
2

the circles a and p, orthogonal to them, are inverted into concentric

circles having this point as their common center. The four inverses of BA'AB'

are therefore collinear with AB' and BA' congruent, so we have a degenerate

parallelogram.

Finally we come to the most interesting case, the case in which A, B, A'

B' are not concylic. Let a

be the circle determined
a

by ABA', a" be the circle

determined by AA'B', 0 be the

circle through B orthogonal to

Ca 2 and 0' be the circle

through B' orthogonal to au'.
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The mid-circles of ce and ce' are in the pencil oxy'; let p be the mid-

circle that separates B from B' (so that B is inside and B' outside,

or vice versa). Let v be the mid-circle of 0 and 0'; then v, being

in the pencil 05' is orthogonal to a; a', and p. Let 01 and 0
2

be

the points of intersection of p and v. When we invert in a circle centered

at 02, the inverses of p and v are perpendicular lines and the product of

/ 0
2

Before inversion After inversion in 0
2

of the reflections in these two lines is a half-turn interchanging the inverses

of A and A' as well as the inverses of B and B'. Thus the four inverse

points are the vertices of a parallelogram.

The product of inversions in two orthogonal circles is called a edbius

involution. A half-turn is a special case, and by inverting in one of the two

points of intersection of the two orthogonal circles we can transform any

MObius involution into a half-turn. The significance of the result we have just

proved is that, given any four distinct points AA'BB', there is a MObius
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involution that interchanges A and A' and also interchanges B and B1.

By analogy with an involution in projective geometry: we call this MBbius

involution (A10)(BB1). If we allow B and B1 to coincide with 0
1

(one

of the points of intersection of the two orthogonal circles), then another name

for this involution is (A4,1)(0
1
0
1
) and, going one step further, we can use

(0
1
0
1
) (0

2
0
2
) as a name for the Miibius involution leaving invariant both

01 and 02, that is, for the product of inversions in any two orthogonal

circles through these two points.

This idea will enable us to show that it is possible to transform any three

distinct points ABC into any three distinct points A1B1C1 by a homography,

i.e., by the product of an even number of inversions. Since a gibius involution

is a product of two inversions, it is enough to transform ABC to A1B1C1 by

a product of gibius involutions. Actually two gibius involutions suffice, and

only two cases have to be distinguished. If two of A, B, C are invariant, we

can assume that A = A' and B = B1; then (AB)(CC).(AB)(CC1) is the desired

product of two MObius involutions. (It reduces to the identity if C = C'.)

If, on the other hand, at least two of the three points ABC are non-iavariant,

then we can assume A A' and B B1, and the desired product is

(A,B1)(A1B).(A1B1)(C1D) with D the image of C1 under (AB1)(A1B). I found

this simple proof in an old book by J. L. Coolidge, A Treatise on the Circle

and the Sphere, published in 1916.

Noting that mid-circles bisect the angles between intersecting circles, we

may ask if there is something that plays the sam role for non-intersecting

circles. In other words, is there som inversive invariant for two non-inter-

sectirg circles that is "bisected" by their mid-circle? One way of developing

such an idea is to imbed the real plane in a complex plane so as to be able to

say that the two "non-intersecting" circles intersect in two conjugate complex
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points. The angle between them at either point of intersection turns out to be

purely imaginary, say 81; so we could ignore the i and use this 6 as our

inversive invariant for the circles. I think, however, that it's nicer to give

a definition in terms of real numbers alone. This can be done. by inverting the

circles into concentric circles. In a pencil of concentric circles, the log-

arithms of ratios of radii are natural things to consider as "distances" between

pairs of circles, since they are additive for the circles in this pencil.

Accordingly, we define the inversive distance between any two non-intersecting

circles to be the logarithm of the ratio of the radii (larger to smaller) of

two concentric circles into which the given circles can be inverted. As this

is independent of the particular inversion used, inversive distance is an

inversive invariant. (Notice that 1 is the inversive distance between con-

centric circles of radii 1 and e.)

Inversive distance has many nice properties. For example if anz three

circles are tangent to one another at distinct points, then the two circles tan-

gent to all three are non-intersecting circles whose inversive distance is

8 = 2 log (2 +15). Similarly there is a nice formula,

sinh =

for the inversive distance 6 between the incircle and circumcircle of a tri-

angle in terms of the inradius r and circumradkas R. Of course, the cir-

cumcircle encloses the incircle.

If, on the other hand, two non-

intersecting circles are so

situated that neither of them

encloses the other, then the

inversive distance 6 is given
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8 t'
tanh =

2 t

where t is the length of either of the two shorter common tangents and t

the length of either of the two longer common tangents. Here is an amusing

paradox: although che mid-circle does bisect the inversive distance between

any two non-intersecting circles, a circle may bisect the inversive distance

and not be the mid-circle! These results are more fully discussed in a recent

paper of mine on Inversive distance in the Annali di Matematica (4), 71(1966),

and in Chapter 5 of Coxeter and Greitzer Geometry Revisited (New Mathematical

Library, No. 19).

As a final remark, three nested non-intersecting circles satisfy a non-

triangle inequality: the sum of the distances between the innermost pair and

between the outermost pain is never more than the distance between the inner

and outer circles. (This will be proved in my Presidental Address to the

Canadian Mathematical Congress, August 1967.)

Discussion.

Several ways of viewing the inversive plane were brought out in the dis-

cussion. In addition to the viewpoint taken in the lecture (in which the in-

versive plane was approached as the Euclidean plane extended by the postulatton

of a single point at infinity) there are the following alternative approaches:

(1) axiomatically, (2) as the geometry of circles on a sphere, without assigning

any special role to great circles, (3) as the geometry of complex numbers in-

cluding the "number" and (4) as the geometry of the complex projective

line. Coxeter remarked that the axiomatic approach (1) was first tried by

M. Pieri in 1911. The spherical approach (2) was used by H. Liebmann in the
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1905 edition of his Nichteuklidische Geometrie, where he remarked that the in-

versions in the m
3 circles of the inversive plane behave like the reflections

in the m
3

planes of a hyperbolic 3-space. The algebraic approach (3) enables

us to regard a pair of points as a pair of complex numbers, and thus as a

binary quadratic form. The pair of invariant points 0102 of the Mobius

involution (LA')(BB') thus appears as the Jacobian of two such quadratic

forms. Finally, the projective approach (4) enables us to identify the theory

of homographies in the inversive plane with the theory of one-dimensional pro-

jectivities.

Gleason asked if inversive geometry is essentially characterized by some

of the basic properties of the inversive group in the sense that given a set and

a group acting on the set, such that the group is exactly three times transi-

tive, it should, using relatively weak incidence axioms, be possible to prove

that the resulting geometry is the inversive plane. Coxeter replied that some

such ideas have been published, e.g., Ker4kjSrtO proved that the sphere is the

only compact two-manifold that admits a triply transitive Lie group.

Gleason gave a solution to a problem, used on the Putnam exam a few years

ago, that Coxeter had posed earlier in the week. If four points ABCD are

not concyclic show that there are two circles, one passing through A and C

and the other through B and D, that do not intersect. The idea of

Gleason's solution was to use stereographic projection to get the points on

a sphere and then look for two parallel planes, one through A and C the

other through B and D. Coxeter's own solution was to consider the perpen-

dicular bisectors of AC and BD. If they intersect use two concentric

circles, and if they are parallel use two circles tangent to the mid-line of

the parallel lines AC and BD. Since the points are not concyclic the
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perpendicular bisectors cannot coincide.

Klamkin said that there is a classical construction, based on inversive

geometry, for the center of a circle, using compass alone.

Reay showed haw the "ancestor argument" used to prove the Schroeder-

Bernstein theorem can be used to prove that if A and B are bounded subsets

of the Euclidean plane, each with non-empty interiors, then A and B can be

partitioned into non-overlapping subsets A1,A2 and B1,B2 such that Al is

homothetic to B1 and B2 homothetic to A2. The basic idea is to choose

two dilatations, the first mapping A into the interior of B and the second

mapping B into the interior of A and then apply the ancestor argument to

obtain a one to one mapping, h, from A onto B with h made up of f

and g The points corresponding in h via f determine the sets A
1

and B
l'

those corresponding via g determine A2 and B2.
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Lecture V. Hyperbolic geometry: The Eau of hyperbplic isometries.

Today I'd like to talk about hyperbolic geometry, the fifth type of

geometry in this series of five lectures. Although I'll say a little about the

hyperbolic plane, I'll focus mainly on hyperbolic 3-space, since it was in

hyperbolic space that' both Bolyai and Lobatchevsky worked. What I have to say

can easily be extended to n dimensions.

Hyperbolic and Euclidean spaces have many common properties, in fact one

can do a lot of work in absolute space, which combines them. The order and

continuity properties are all the same, and right angles are defined in both.

The first major difference comes in the matter of parallelism.

Consider a line se*gment AB of length 6 and choose a ray from A at

right angles to AB. As a point D

moves out along this ray from A the

ray from B through D approaches

\
a limit ray which in the Euclidean

D case is also perpendicular to AB.

In the hyperbolic case, however, the
tr.

angle between this limit ray and

BA is less than a right angle and depends on 6. Since it is a definite

function of 6 we call it 11(6), the angle gf. parallelism. We reservo

the term parallel for this critical limit position. Any line BC such that

11(8) < angle ABC < n n(8)

is said to be ultraparallel to AD. After proving that parallelism is

symmetric and transitive, we can distinguish three kinds of pencils of lines

in the hyperbolic plane. The first kind is the familiar pencil of all lines

through a given point, called an intersecting pencil. The second, called a
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,0 intersects m

/e
parallel to m

.0

ultraparallel to m
111011 INVOISO IMMO

moe
/e parallel to M

/e intersects m
in

2encI.1 of parallels, is e pencil of all lines parallel in the same direction a. c,

as Hilbert picturesquely described it, a pencil of lines with a common end.

Any line has two ends in hyperbolic geometry rather than only one as in Euclid-

ean geometry. If you move out along two rays that 1.4re ultraparallei, the dis-

tance between them may decrease for awhile but eventually it will increase. At

the critical point where the distance is minimum the rays have a common perpen-

dicular. Hilbert gave a nice geometric proof that ultrapatallels always have

a common perpendicular. Thus the third kind of pencil, a pencil of ultra-

parallels, is the pencil of all lines perpendicular to a given line.

There are three interesting types of curves in the hyperbolic plane cor-

responding to the orthogonal trajectories for these three types of pencils. A

circle like the familiar circle, is an orthogonal trajectory of an intersect-

ing pencil and is the locus of all points at a constant distance from the point

of intersection. The locus of points at a constant distance (on eitheT side)

from a fixed line is called an equidistant curve or sometimes a ImesEsyck..

It is orthogonal to all lines in the pencil of ultraparallels perpendicular to

this line, and each of its two branches is an orthogonal trajectory. In be-

tween circles and equidistant curves are the orthogonal trajectories of pencils

of parallels, called hstmayski.

The classification of isometrics in the hyperbolic plane is almost the

same as in the Euclidean plane. As before, each isometry is the product of at
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most three reflections (with lines for mirrors). A product of two reflections

is a rotation, parallel displacement, or translation according as the lines

intersect, are parallel, or are ultraparallel. Since ultraparallels have a

common perpendicular, a translation is a product of half-turns (as in Euclid-

ean geometry). In the hyperbolic case a translation has a unique axis and not a

pencil of parallel axes. It is determined by its action on a point on this

axis but not by its action on a point off the axis. The orbit of a point off

the axis of a translation is on one arc of an equidistant curve. The product of

three reflections is -ither a single reflection or a glide reflection, and the

theory of glide reflections is exactly the same as in Euclidean geometry.

We do not have to bother classifying other kinds of similarities in hyper-

bolic geometry since the only similarities are the isometries. Therefore the

classification of the various kinds of elements in the group of hyperbolic

geometry is much simpler than in the Euclidean case. The group of isometries

is generated by the reflections and contains the subgroup of direct isometries:

rotations, parallel displacements, and translations.

Before leaving the hyperbolic plane I should mention a typical theorem of

absolute geometry (the common ground of Euclidean and hyperbolic geometry). I

think it is of great pedagogical interest to see how far one can go without

committing oneself concerning parallelism. Consider the theorem about a quad-

rangle inscribed in a circle, which is usually stated as "the sum of two

opposite angles is 7." That of course is not true in hyperbolic geometry,

but what is true is that the sum of two opposite angles is the same as the sum

of the other two opposite angles. This is a nice substitute.

Now let us go on to three-dimensional hyperbolic space and consider the

classification of similarities there. As in the hyperbolic plane there are
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no similarities except isometries and therefore it is a rather easy classifica-

tion. As in Euclidean space, every isometry of hyperbolic space is the product

of at most four reflections (in plane mirrors), in fact at most three if there

is an invariant point. Thus every direct isometry with an invariant point is

a rotation. Just as two lines in the hyperbolic plane are either intersecting,

parallel, or ultraparallel, so two planes in hyperbolic space are either inter-

secting, parallel, or ultraparallel. illtruarallel planes have a unique common

perpendicular line, but parallel planes have neither a common point nor a

common perpendicular. Thus the product of two reflections in space is a rota-

tion if the mirrors intersect, a parallel displacement if they are parallel, or

a translation if they are ultraparallel. The only other type of direct isometry,

a product of four reflections, is a twist or screw aisElammas, which is the

commutative product of a translation and rotation with the same axis. An

opposite isometry which is the product of three reflections is either a rotatory

reflection, a parallel reflection (two parallel mirrors perpendicular to the

third mirror), or a glide reflection (two ultraparallel mirrors perpendicular to

the third mirror).

With this one gets some feeling for the fact that hyperbolic geometry is

homogeneous (all points are alike) and isotropic (all directions are alike).

The ends of all the rays through a point 0 behave like points on a very large

sphere enclosing everything, and the two ends of a line through 0 are like

antipodal points on the sphere. You can think of the planes of hyperbolic

space as cutting this big sphere in circles; moreover if you take a line

through 0, the pencil of ultraparallel planes perpendicular to this line 0.uts

the sphere in a family of circles, among which we are tempted to regard the

one with center 0 as a "great" circle until we recall that, the space being

homogeneous, 0 is just like any other point. We are thus led to a geometry
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on the sphere in which circles play a crucial role and in which there, is no

distinction between great circles and small circles. In fact one can formalize

this rather easily and show that the geometry of planes in a hyperbolic space

is isomorphic to the geometry of circles on a sphere, i.e., to the geometry of

the inversive plane. This iE the isomorphism noted by Liebmann in 1905.

[Editor's note. This isomorphism is discussed by Coxeter in his paper "The

inversive plane and hyperbolic space," Abh. Math.,Sem. .1211122110 vol. 29(1966),

pp. 217-242.] It is a very interesting and useful isomorphism which can be

used both ways--sometimes to derive results in hyperbolic space by considering

their analogs in the inversive plane and other times to do the reverse.

The actual dictionary for the transition back and forth between the

isometries of hyperbolic space and the homographies and antihomographies of the

inversive plane appears on page 266 of the fifth edition of my Non-Euclidean

Geometry. Let me quote a little of it. The reflections in planes of hyper-

bolic space correspond quite naturally to inversions in circles in the inversive

plane, Products of two reflections, namely rotations, parallel displacements,

and translations, correspond to rotatory, parabolic, and dilative homographies,

since the planes are intersecting, parallel or ultraparallel according as the

corresponding circles are intersecting, tangent, or non-intersecting. A twist

corresponds to a loxodromic homography, the commutative product of a dilative

homography and a rotatory homography. In this dictionary I am using the termi-

nology given in Du Val's book Hamographies, Quaternions and Rotations. This

terminology is almost the same as in Ford's Automorphic Functions or in

Schwerdtfeger's Geometry of Complex Numbers.

It is natural to go one step further and consider the inversive plane as

the Euclidean plane (or the plane of complex numbers) with an extra point at
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infinity. You can choose any point you like in the inversive plane and call it

the point at infinity and then get a corresponding Euclidean plane and represent

each one of these transformations in a standard form. The basic transformation,

inversion, corresponds in this way to the ordinary reflection in a line, since

a line is the same as a circle from the point of view of inversive geometry. If

we take this line to be the real axis in the plane of complex numbers then the

standard analytic form of an inversion is z I

In this fashion we get the following table for homographies and direct

isometries.

Direct isometries Direct similarities Analytic forms in

ot_h_yasbolic space Homographies in the Euclidean plane the complex plane

rotation rotatory rotation z' = kz, k = e

parallel displacement parabolic translation z' = z + 1

translation dilative dilatation z' = kz, k = e8

twist loxodromic spiral similarity z' = kz, k = eofle

A special case of a rotation, tAe half-turn, corresponds to the MObius

involution, or in standard form z' = - z. The opposite isometries correspond

to antihomographies in a similar fashion as follaws.

Hyperbolic Inversive Euclidean Complex

elliptic

rotatory reflection antihomography rotatory inversion z' = kf, k = e

parabolic

parallel reflection antihomography glide reflection z ' = + 1

hyperbolic

glide reflection antihomography dilative reflection z' = k, k = e
8

I should say a little about the metric features of this isomorphism

between the two geometries of hyperbolic space and of the inversive plane. It

is a conformal transformation, i.e., the angle between two intersecting planes
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is exactly the same as the angle between the corresponding intersecting circles.

The distance between two points in hyperbolic space can be thought of as the

distance between the two ultraparallel planes through these points and perpen-

dicular to the line segment joining them. This distance is the minimal distance

between the two planes. If we define this to be the "distance" between the

corresponding non-intersecting circles in the inversive plane then, since it is

an inversive invariant and is additive for coaxal circles, it must be the same

as the inversive distance as defined in yesterday's lecture.

If we fix car attention on one particular hyperbolic plane, a, we can

identify the lines in with the planes perpendicualr to a, e.g., the

geometry of lines in a horizontal plane is the same as the geometry of vertical

planes. Since we have established an isomorphism between planes and circles,

we see that the geometry of lines in a hyperbolic plane is isomorphic to the

geometry of circles orthogonal to the circle representing that plane. Thus

PoincarS.'s model is an immediate consequence of Liebmann's.

Now we have everything needed to prove tlw famous formula for the angle

of parallelism: E(8) = 2 arctan e
-8 Recall the original figure in the
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hyperbolic plane, let N be

the common end of the parallel

rays from A and B and let

H(ô) = 20. Since we're working

in the inversive plane we can

adopt the Euclidean point of view

and take the circle for our fixed

plane to be a line. The

lines in our plane will then



be represented conformally by circles and lines orthogonal to this line, so

for example the representation of the parallel lines AN and BN is as in the

adjgcent diagram in which we have

denoted one end of the line AB by

M. Note that the line AN, orthogonal

to the line AB, is represented by a

circle centered at M. To find the

Euclidean analog of the distance 6 we

recall the definition of inversive dis-

tance. The hyperbolic distance between

A and B is the same as the distance

between the ultraparallel planes

perpendicular to AB. These planes are represented by two circles concentric

A

AM
'

6 AMat M, whose inversive distance is log thus e =
BM

If we construct
BM

lines joining B to N and the center 0 of the circle representing AN,

then since angle BNO = i angle Davi and angle Dom = 20, angle BNO = O.

NM AM
Therefore cot 0 =

'

and since NM = AM we have cot 0 = = e
6

This
BM BM
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completes the proof that 11(6) = 20 = arctan e
-8

This proof, due to P. SzA'sz,

is much simpler than any other published proof.

To complete this lecture let me briefly mention two topics, either of

which could keep us here for three or four hours.

In the Klein model of hyperbolic space one thinks of a sphere in Euclidean

3-space in which the chords of that sphere are the lines of hyperbolic space.

Each plane a of Euclidean space which cuts the sphere represents a plane of

hyperbolic space and can be replaced by its pole A with respect to the sphere.

This is the vertex of an enveloping cone which touches the sphere along the

circle cut out by the plane a. Or, if you prefer, you may think of the Klein

model in terms of a non-ruled quadric in real projective space and replace each

plane that cuts the quadric by its pole, a point outside the quadric. In

either way the circles of inversive space and the planes of hyperbolic three

space are represented by points outside a non-ruled quadric, so you get an

exterior-hyperbolic .space whose points represent: circles in the inversive plane.

Using this you can represent pencils of coaxal circles by ranges of points in

the exterior-hyperbolic space. In other words, circles of the inversive plane

correspond to events in a three-dimensional de Sitter's world; for in de Sitter's

four-dimensional world of space-time you have events which can be mapped onto

the points of an exterior hyperbolic four-space (the points outside a non-ruled

quadric in real projective four-space). If you concentrate on a subspace you

can cut out one dimension of the space and thus think of points outside an ordi-

nary quadric. In this space a timelike line is a line which, when extended, will

cut the quadric, a spacelike line is one which is a non-secant, and a null line

is a tangent line. Successive events on the world-line of any observer are

represented by nested circles in the inversive plane. The remark that I made

yesterday, that inversive distance satisfies a non-triangle inequality for
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nested circles, is equivalent to the fact that a non-triangle inequality holds

for timelike separations of events in de Sitter's world. The proper time of an

observer going "out and back" will be less than that of one staying at home.

This is of course connected with the twin paradox and related features of

relativity theory.

My final remark is that the geometry of the inversive plane, i.e., the

geometry determined by the linear fractional transformations, can be interpreted

as the projective geometry of one dimension over the field of complex numbers.

As I indicated in the lecture on projective geometry, you can think of a one-

dimensional complex projective geometry as the geometry of points on a conic in

the complex projective plane. Point pairs, which in this geometry determine

secants of the conic, correspond to point pairs in the inversive plane which in

turn correspond to lines of hyperbolic space. (rhink of a line in hyperbolic

space as determined by its two ends.) So you have a natural way for translating

theorems about the complex projective plane into theorems about hyperbolic

space. One nice example of this is the correspondence between Desargues'

theorem in the complex plane and the Morley-Petersen theorem in hyperbolic

space. Given a skew hexagon (in hyperbolic space) formed by six lines such that

every consecutive pair are perpendicular, then each pair of opposite sides of

this skew hexagon have a unique common perpendicular line. The Morley-Petersen

theorem asserts that the three lines, determined in this way by the three

pairs of opposite sides, have a common perpendicular. Thus we have a configura-

tion of ten lines, each meeting three others at right angles, which is quite

symmetrical and corresponds to the Desargues configuration 10
3.

Of course,

the Morley-Petersen theorem belongs to absolute geometry and thus holds in

Euclidean space too.
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Discussion.

Gleason asked how one could prove easily that two ultraparallel planes

have a unique common perpendicular. Coxeter replied that here was a place where

the isomorphism between hyperbolic space and the inversive plane could be used

to advantage, for presumably one could set up the isomorphism without having to

prove anything as complicated as this and then the following proof could be

given. Pairs of planes correspond to pairs of circles which are either inter-

secting, tangent, or non-intersecting, so planes are either intersecting,

parallel, or ultraparallel. In the third case, the case of non-intersecting

circles a and 0, the limiting points of the pencil a0 are the unique

point pair such that every circle through these points is perpendicular to

a and p. Translating back to hyperbolic space, the line determined by the

two ends corresponding to the two limiting points is the unique line such that

every plane through this line is perpendicular to the two given ultraparallel

planes.

Busemann, Coxeter, Gleason, and Prenowitz engaged in a spirited discussion

of the relative merits of the Klein, Poincare, and Liebmann models of hyperbolic

space, especially in reference to the simplicity of the proof of the basic

formula H(8) = 2 arctan e
-6 Busemann presented an alternate proof of the

formula using the Klein model. Prenowitz and Coxeter agreed that the Liebmann

model was in a slightly different class since it is an isomorphism between two

geometries which can be used to rrovide either a model of hyperbolic space in

terms of the inversive plane or to provide a model of the inversive plane in

hyperbolic space. Gleason commented that the motivation given !..a the lecture

for the Liebmann isomorphism provides a basis for proving that the Klein model

is a model. Coxeter responded that a nice feature of Liebmann's presentation

70



was that it unifies the Klein and Poincare models, i.e., Liebmann observed that

if you concentrate on the sphere of ends it doesn't matter which model you use;

for the ends behave in the same way in both cases. Johnson observed that in a

sense one could say that the Poincare model is essentially an inversive model

and that the Klein model is ess-,ntially a projective model.

Gleason commented that he felt that in teaching this material, which he

found fascinating, it would be a significant improvement to add one aspect of

the subject that would relate it to other subjects. This one aspect is the way

some of these transformations belong to the same one-parameter subgroups of the

governing Lie group. In other words, whenever possible, attention should be

focused not on one transformation alone but on the continuous family or families

containing that transformation. This would lead naturally into the study of

continuous groups. Coxeter replied that it was only lack of time that forced

him to leave this out, but, for example, one of the things he had hoped to say

was that a twist (in hyperbolic space) can be viewed as operating continuously

and then the orbit of a point is a curve which one should call a helix since

it has all the properties of an ordinary helix. The correspanding orbit of a

loxodromic homography in the inversive plane is what one would call a loxodrome,

the inverse of an equiangular spiral in the Euclidean plane. An interesting

feature here is that there is only a singly infinite family of essentially

different loxodromes--they depend on the angle alone. Johnson pointed out a

nice way to visualize loxodromes on a sphere: follow a fixed (true not magnetic)

compass bearing, not due north or south, on the sphere. Coxeter commented that

a loxodrome has two poles and that the only reason an equiangular spiral seems

to have only one is that the other is the point at infinity.
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TWO APPLICATTONS OF GEOMETRY

Lectures by Herbert Busemann

(Lecture notes by Melvin Hausner)

Lecture I: The Simultaneous Approximation of n Real Numbers Rationals.

Of all the problems in mathematics in which geometry can be used, I prefer

those in which geometric insight makes the situation absolutely clear. The

most famous example is Riemann's application of topology to the study of alge-

braic functions. Another example is Poincare's application of hyperbolic

geometry to the theory of automorphic functions. In this lecture and the next

I shall consider two topics which need very little background but in which the

application of geometry is most forceful. The first topic is a problem in

approximation by rationals. The caler is a problem in the calculus of varia-

tions, which will be discussed in the next lecture.

If q > 0 is an integer, and if o'1"."pn-1
are n-1 real numbers,

then there exist integers Do'1"*"Pn-1
such that

I Pi
I 1

I q Pii *** 2q '

i = 1,...,n-1.

1 2
To see this, we mark off on the real axis the points 0, .

q q

Each point p
i

falls in one of the intervals determined by the points

and it is sufficient to take the nearest endpoint to obtain a Indeed the

distance to the nearest endpoint of an interval is never more than half the

length of the interval.

Hermite proved the following stronger result. Suppose pl,...,pn_l are

given real numbers. Then there exist integers p1,p2,...,pn (pn > 0) such

that
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1

In Pil (n-1) '

vn

i = 1,...,n-1.

1

In this case, the error for large p
n

is of course smaller than the
Yn

guaranteed by the previous argument. Actually, Hermite's result had another

factor, larger than 1, on the right-hand side. We shall gi-re Minkowski's

geometric approach in what follows. It is worthy of note that the result

certainly does not appear to have anything to do with geometry.

We consider a second problem also due to Hermite. Let

E
2
(x) = Ei,k=1 gikxixk

be a positive quadratic form. Thus E(x) > 0 provided x 0. Hermite

considered the question of how small can E(p) be, if p is a non-zero

vector with integral coordinates. hermite found a lower bound for such E(p)

which depends oily on D = det(gik) and the dimension n. This result also

appears to have no geometric significance. However, we can see geometry enter-

ing by recalling that the volum of the ellipsoid given by E(x) g. I can be

expressed in terms of D. If we let VE be the volume of the ellipsoid

E(x) g 1, we have VE = ling15, where 'an. is the volume of the unit ball

( 7n = nin/r(14)).
x2 2

We can verify this in the simple case of the ellipse 2-al-f312. = 1.

Here 1

a
2 °

a
0

D =
1

and Tr
2

= n.

Thus the formula above gives VE = 172A(5 = Trab.

In the general theory it is the volume VE which enters, rather than

the specific formula for it. Therefore we shall not concern ourselves with

the proof of this formula. Using VE, rather than the equivalent expression
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in terms of D, Hermite showed that it was possible to find a lattice point

p such that

0 < E(p) g 2/9/c.

(h lattice point is a point with integral coordinates.)

We can rephrase the theorem in the follawing way. If V
E

2n then
'

the ellipse E(x) g I must contain a lattice point other than the origin 0.

In the diagram, any ellipse with center 0 and area 4 = 2
2

will contain

a nontrivial lattice point, even if the ellipse is long and thin.

Minkowski observed that the same theorem is true if the ellipsoid is

replaced by any centrally symmetric convex body with the origin as its center.

In this case we also have the result that if V
K

then there exists a

lattice point p in K with p 0. Here VK is the volume of K. In this

general formulation the number 2n is best possible. To see this we need only

consider a cube centered at 0 with sides slightly less than 2. Minkowski

also noted that this.general theorem on convex bodies implies Hermite's result



on rational approximations. We shall prove this, but we first consider a

result of Minkowski on convex bodies.

We shall work in n-space. Suppose that K is a given (closed and

bounded) convex body with center at the origin. We introduce a function r(u),

defined for all unit vectors in Rn: r(u) is the largest number X such

tnat Xu is in K. It is not

hard to verify that r(a) is

continuous and that r(-u) = r(u).

Since r(u) is continuous on

the unit sphere it has a minimum

value r
1
> 0 and a maximum

value r
2

< co

(u)u

Corresponding to the function E(x) for the ellipsoid, we now define

the real-valued function K(x) for all points of space:

K(0) = 0,

K(x) =
lxi

r(x/Ix1)
2

if x

Theorem 1. The function K(x) has the following properties:

1. K(x) > 0 for x O.

2. K(tx) = itIK(x).

3. K(x) is a convex function.

The proof of statement 1 is immediate. To prove statement 2, we note that

it is trivial if t = 0 or if x = O. Otherwise,

K(tx)
Itx1 Itl[xl

Itl K(x),
r(tx/Itx1) r(x/Ix))

since r satisfies the equation r(u) = r(-u). We shall find it more conveni-

ent to prove the following alternate formulation of statement 3:
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3'. K(x + y) g K(x) + K(y).

We first show the equivalence of statements 3 and 3' (assuming statement

2). First, assuming 3', we have

K((1-0)x + ey) g K((1-0)x) + K(05) = (1-0)K(x) + 0K(y)

if 0 g 0 g 1. This proves that K is convex, and we have statement 3.

To go the other way, assuming that K is convex, we have

iK(x + y) = K(ix + iy) g iK(x) +

Thus statement 3' follows from statement 3.

Before proceeding to the proof of 3', we mention two important facts

about K(x). These are:

4. K(x) g 1 if and only if x is in the convex set K.

LEL5. g K(x)
r ri

Both of these statements follow immediately from the definitions of

r(u) and of K(x).

We now prove 3 The statement is clearly true if x = 0 or if

y = 0, so we may assume x 0 and y 0 with no loss in generality.

The points x/K(x) and y/K(y) are in K, since

K(x/K(x)) = 1 = K(y/K(y)),

by property 2. Thus, using property 4, we see that they are points in K

y
We now express the point

x +
as a convex combination of these

K(x) + K(y)
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two points. We have

Thus

x + y x L(y)

K (x) + K(y) K(x) + K(y) K(x) K(x) + K(y) K(y)

x + y
is an element of K. Again by 4, this implies

'K(x) + K(y)

K( x 5. 1
VK(x) + K(y)1

Finally, using 2, we obtain the required result after multiplying the last

inequality by K(x) + K(y). This completes the proof of the theorem.

We remark that, conversely, if K(x) is a real-valued function defined

in n-space satisfying conditions 1, 2, and 3 (or 3'), it is an easy matter to

show that the inequality K(x) Ls. 1 defines a centrally symmetric convex body.

Thus there is a one-to-one correspondence between such functions and convex

bodies with the origin as center. To see that K(x) g 1 defines a convex

body, we note that if K(x) g 1 and K(y) g 1, then

K((1-0)x + 8y) g (1-0)K(x) + 0K(y) g (1-0) + 0 = 1,

for 0 5 g 1. Thus the inequality is satisfied by every convex combination

of points which satisfy it.

For an ellipsoid the expression

E (x - y) = /Eikgik (xi - yi) (xk - yk)

gives the ordinary Euclidean distance in oblique coordinates. One of

Minkowski's two ideas in this development was the idea of generalizing this

formula to introduce what we now call the Minkowski distance m(x,y) = K(x-y).

(The other main idea was the recognition that only the volume was involved in

the formulation of the problem.) We note that while this distance function

was introduced before Frechet's general formulation, Minkowski proved the

three conditions for a distance. Thus, defining m(x,y) = K(x-y), we have

a) m(x,x) = 0,

b) m(x,y) = m(y,x) > 0 if x y,
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c) m(x,y) + m(y,z) m(x,z) (the triangle inequality).

The verification is straight-forward:

a) m(x,x) = K(x-x) = K(0) = O.

m(x,y) = K(x-y) = K(-1(y-x)) = 1-11K(y-x) = m(y,x) > 0 if y x.

c) m(x,z) = K(x-z) = K((x-y)+(y-z)) K(x-y) + K(y-z) = m(x,y) +tn(y,z).

The distance m(x,y) satisfies some further properties which we shall need.

One of these properties is that it is translation invariant: only the differ-

ence x-y enters into the definition. Thus

d) m(x+a,y+a) = m(x,y).

More generally, if x' = Ox + a is a similitude, the Minkowski distance

changes by the factor 101.

e) m(x',y') = 10Im(x,y) for dilations with a factor 0.

A special case is a reflection in a point. This occurs when 0 = -1. Thus

ate metric is invariant under reflections in points.

We also remark that the closed ball of radius p about p given by the

inequality m(p,x) g p can be transformed into the ball with center p and

radius a by a dilation with the factor a/p. Thus the Minkowski metric has

some of the features of the Euclidean metric. Of course some features are

lost. For example, it is not invariant under rotations.

With this preparation, we are ready to solve the problem of Minkowski.

Theorem 2. If K(x) is a function satisfying the hypothesis of

Theorem 1, and if V
K

is the Euclidean volume of the convex set K consisting

of all points x with K(x) g 1, then there exists a lattice point

p = (pi,...,pn) such that

20 < K(p) -

79



Another way of stating this result asserts that if the volume of the

convex body K is at least 2n, then there is a non-zero lattice point p

in K. By symmetry, of course, there are at least two. In what follows p

will be used to denote a lattice point. We now prove Theorem 2.

We first note that the inequality 5, Ixl/r2 g 'K(x), implies that

K(x) m as !xi m. Therefore the minimum of K(p) over all non-zero

lattice points exists and is a positive number. We shall let M be this

minimum:

0 = min K(p).
1)/0

We note further that M is the minimum Minkowski distance between two differ-

ent lattice points: m(p,p') = K(p-p'). It follows that the closed balls of

radius itM about distinct lattice points p and p' do not have a common

interior point. For if y were such a point, we would have m(p,y) < iM

and m(p',y) < M. It would follow that

m(p,p') g m(pa) + m(Y2P') = m(pa) + m(p',Y) < + = M.

Thus we would have m(p,p') < M, which contradicts the definition of M as
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the least Minkowski distance between distinct lattice points.

Now let w be any positive even integer. (In the end we shall let

w m, but for the present,

keep it fixed.) We now consider

all of the lattice points whose

coordinates are chosen from

among the numbers (0,i1, ...2±iw) 2

the lattice points inside the

closed cube of length w center-

ed at 0. Since there are

w + 1 = 1 + 2(iw) choices

for each coordinate, there are

exactly (0) + 1)n such lattice points. We call the set of these lattice

points S. We now cover each point p of S
w

with S , the closed ball

(using the Minkowski metric) centered at p with radius iM, and we consider

the volume of the union Lj s . First, each ball has the same volume since

pESto P

the balls are translates of one another. Next, the ball centered at 0 with

radius iM is obtained from the unit ball by a dilation of factor M. Thus .

the volum of S is equal to (iM)nVk, since dilations in n-space magnify

th
volumes by the a-- power of their factors. Finally, since there are (0) + 1)

n

lattice points in S
w

and since the spheres have no common interior points,

it follows that the total volume of this set of balls is

V = (w 1) n(in\ ,

where V
K

is the volume of the unit ball.

We shall now obtain an upper bound for this volume by enclosing the det

in a cube. Since the spheres at the boundary of the cube Ixl w stick out
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for a Minkowski distance M, it is necessary to estimate this as a Euclidean

distance and to enlarge this cube by an appropriate amount to contain the union

of our spheres. If K(x) g *1 then, using inequality 5, we have

lx1 g r2K(x) gr2aM).

Therefore, if we extend the cube for a Euclidean distance of r2(iM) in each

direction, the resulting cube will enclose all of our spheres. The side of this

K(Y) =

IYI = r2(iM)

larger cube has Euclidean length 2(iw + r2(iM)) = w + r2M, so the volume

is OD r
n We therefore obtain the volume inequality

OD + 1) n an) nVK g (A) + r 2M) n .

Dividing by (cp + 1)n, we have

(14u\nv (w 1.214r1

2"/ K w + 1

Finally we let w co and obtain (iM)nVK g 1 or M g 2/7-ic". Since M is

the minimum value of K(p), for p 0, we have the result.

Again we rephrase the result: A convex body in n-space, symmetric about

the origin, with volume at least contains a non-zero lattice point.

We started with the theorem of Hermite concerning the approximation of
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real numbers by rationals. As we shall see this is an easy consequence of

Minkowski's result.

Suppose L(x) is a non-trivial linear function of x:

Li(x) = ailxl + + ainxn,

i = 1,...2v,

where v n. We shall suppose that the matrix (aik) has rank n.

We now consider the system of v linear inequalities given by

IL.(x)I
1. Each of these inequalities has as its solution an infinite strip,

symmetric about the origin, and bounded by the hyperplanes L(x) = ± 1,

= 1,...,v. The intersection of these strips is a convex set with the origin

as center. The condition that the matrix of coefficients have rank n assures

us that this set is a bounded

convex set. (Geometrically, the

rank condition state.s that the

normals to the bounding hyper-

planes span n-space.) If we let

K denote this intersection, the

point x is in K if and only

if x satisfies each of the v

inequalities ILi(x)1 g 1. There-

fore, applying Minkowski's theorem,

we can make a statement about non-trivial integral solutions of this system of'

inequalities.

Theorem 3. Let Li(x) = Ettaikxk, ...2v, and suppose that the

matrix (a
ik

) has rank n. Let VK
be the volume of K, the set of all

points satisfying the inequalities ILi(x)1 g 1. Then there is a lattice point
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p satisfying

ILi(p)( g 2/Wc, p / 0, for i = 1,

With these preliminaries we turn to the theorem on approximation by

rationals.

Theorem 4. Let
n-1

be given real numbers. Then there exist

integers pi,...,pn with pn > 0 such that

pPin P i ;137717-1-5-
1

To prove this theorem, we specialize the discussion above to the case

v = n. In this case we have n strips, meeting in a parallelepiped whose

volume can be found easily. We suppose then that Li(x) = Ekaikxk,

i = l,...0n, A = Jet(a
ik

)
'

and K is the convex set consisting of all points

satisfying the inequalities 1L1(x)I g 1. To find the volume of K we change

coordinates, taking xl = Ert=laikxk. The convex set K, given by the inequali-

ties aik. x
k

g 1, goes into the convex set K', given by
I 4=1

Ixti g 1.

But K' is simply a cube of side 2, whose volume is 2n. The Jacobian of the

transformation is det(aik) = A. Thus, the formula for changing variables

gives

2" = $S dxj...dx1; = SS lA1dx1...dxn = IAIVK.

K'

Hence VK = 2n/1AI. Consequently the Minkowski theorem, applied to this

special case, shows that there is a non-zero lattice point p satisfying

1

g 204V- = lAin, for i = 1,...,n.

We now choose particular linear functions as follows:

L(x) = xi - pixn,

L
n
(x) = x

n
t
-n

= 1,0000.40

where t may be any number greater than 1. We can compute A for this
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system easily:

A =

1

1

.

-P1

.

0 .

=

t-11

len
Thus A = l/tn and - 1/t. Applying our general results, we obtain

a system of integers pi, i = 1,...,n, not all zero, for which

1 .

IPi PiPnl 1g p = 1,...,n-1,

IN 1
I

t
n 7

Hence pn cannot vanish, since the first n-1 relations would then imply that

stead of pi, we may assume

p
n
> 0. We therefore conclude that for each t > 1, there are integers

P1,...,Pn, pn > 0, satisfying

1

i..13

Pn

This result is somewhat stronger than the result we set out to prove. We

obtain Hermite's result by noting that p
n

1/(n-1)
t:

"1

1 tn-1.

vntp
n

P
1-113.' iln I

< 1

(n-1)
_ 1

13
--17777775-

Pn
1/

°Pn Pn

The result can be improved somewhat. For example, the factor (n-1)/n can

be introduced into the upper bound. This was done by Minkowski, also geomet-

rically.

Before leaving the field of Minkowskian geometry, 1 should like to give

another striking application. We defined a function K(x) associated with

any compact centrally symmetric convex body K; then w'e defined the Minkowski

distance m(x,y) = K(x-y). Suppose H is a hyperplane and p is a point not
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on H. Then it is an easy matter to show that there is a shortest Minkowski

4." The ball m(x,p) .*K

distance from p to H. (Here we use p to denote any point, not just a

lattice point.) To see this, we note that the Euclidean distance from p to

a point h on H approaches infinity as h approaches infinity on H. But

the Minkowski distance is greater than some positive multiple of the Euclidean

distance. Hence, in order to find the shortest distance, we may assume that

h is in some large ball with center p. Then we can apply the usual compact-

ness argument to show that the shortest distance is achieved. (If K has a

(k-l)-dimensional face, the nearest point may not be unique.) Let us call a

nearest point f on H the foot as in Euclidean geometry, and let us call

the line through p and f a perpendicular from p to H. Then, because of

the properties of the Minkowski distance under dilations, it is easy to prove

that this line is a perpendicular to H from any point on it. If a Minkowski

ball centered at p with radius m(p,f) is constructed, then H will be a

hyperplane supporting this ball at f. Because of central symmetry, the hyper-

plane H' obtained by reflecting H through p will support the ball at ft,

the reflection of f through p. The line through p and f is perpendicular
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to H' too. Any line parallel to pf is also perpendicular to H.

We now discuss a problem which was considered by many people and solved

only in a few special cases until A. E. Taylor* observed that its solution is

a trivial consequence of the ideas we have been discussing.

Problem. Let K be a compact convex centrally symmetric body. Is it

possible to circumscribe a box (i.e., a parallelepiped) about K so that the

center of each (n-1)-face is in El

To solve this problam, we consider first the follawing problem, which will

turn out to be useful for solving the original problem. Given p > 0, con-

struct the box of maximum volume, each of whose sides has Minkowski,length p.

This problem clearly has a solution, since, if one corner is kept fixed

at the origin, the other vertices range over a compact set. (gote that we use

the term box in an extended sense, including possibly degenerate parallele-

pipeds.) We claim that an edge a1a2 is perpendicular to the hyperplanes H1

and H
2

which carry the (n-1)-faces that intersect the edge in its endpoints

a1,a2. For if a2 is not a foot of

al in H2, let f be such a foot.

Then m(a,f) < p. Prolong alf

beyond f to the point a for which

m(al,a) = p. Then translate the

(n-1)-face in H2 so that a2 falls

on a. The box spanned by the trans-

lated face and a
1

then has greater

volume than the original box, but all

its edges have Minkowski length p

*Bulletin of the American Mathematical Society, 53(1947), 614-616.
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Finally, to solve the original problem, we take p = 2. The box of maxi-

mum volume will be the required box. We merely translate it so that its center

is at the origin and take K as the unit ball in Minkowski geometry. Since

each edge of the box has Minkowski

length 2, it follows that each face

is a supporting hyperplane of K. For

the line from the origin, parallel to

the edges and meeting a face in one

point, is perpendicular to that face,

since it is a translate of an edge.

gut this line meets the hyperplane

in its center, and it meets at a Minkowski distance 1 from the origin. Hence

the center of any face is in K, and the proof is finished.
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Lecture II: An Application of Integral Geometry to the Calculus of

Variations.

My second example of an application of geometry to another field of

mathematics uses an idea from integral geometry but does not actually use

integral geometry itself. This idea provides the basis for a simple proof of

a theorem which had previously been considered difficult; hut nobody would

have thought of this proof unless he had seen integral geometry. We therefore

give a brief description of integral geometry in a very simple setting.

In the plane it is reasonable to regard the area of a domain D as "the

number of points in the domain." If we write p = (x1,x2) and dp = dx1dx2,

we simply call

Spdx1dx2 = !dip

the number of points in D. In integral geometry we count lines and other

objects in similar ways. That is, we introduce a suitable measure or density

dL in the space of lines and evaluate Sx dL over some set X of lines.

The answer is called "the number of lines in X." However, to give geometrical-

ly significant results this measure must be invariant under rotations and trans-

lations. Abstractly we have a set of objects and a group acting on these

objects. We are required to introduce a density which is invariant under this

group. It might be thought that one can always be found if the group is nice

enough. But it is not so. For example, the linear subspaces of a fixed

dimension in a projective space do not have a density invariant under the pro-

jective group. (A theorem of Chern gives general conditions for such a density

to exist.)

However, we can easily find a suitable density for the lines in the plane.

We first find suitable coordinates to express these lines and then introduce a
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density in the space of these coordinates. Natural coordinates are introduced

if we use the normal form for the line:

x cos y + y sin y - p = 0, 0 g y < 217, p O.

We shall use y and p as coordinates for the line and we shall show haw to

find a density which is invariant under the group of Euclidean motions.

We suppose that f(p,y) dy dp is such a density. That is, if X is a

set of lines in (y,p) space, the number of lines in X will be given by

Ix f(p,y) dy dp. If X is a set of lines which is transformed by a motion

into a set X*, invariance requires that

Sx f(p,q) dy dp = Sx* f(p*,(e) dy* dp*.

(It will turn out here that we can choose f(p,q) 1 identically. Hawever,

this is an accident which depends on our choice of coordinates to describe the

lines.)

We now compute what a motion does to lines and see how the motion trans-

forms a set X. Any motion (on points) is given by the equations

= x* cos a - y* sin a + a,

y = x* sin + y* cos a + b.

The equation x cos y + y sin y - p = 0 is transformed into

(w* cos a - y* sin a + a) cos y + (lc* sin a + y* cos a + b) sin y - p = 0

which after simplification becomes

x* cos (y-a) + y* sin (y-a) - (p - a cos y - b sin y) = 0.

The coordinates y*, p* of the transformed line are therefore given by the

equations

y* = y - a,

p* = p - a cos y - b sin y,

if p - a cos y - b sin y 0. If not, we do not have normal form, so we

would have
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y* = y - a + rr ,

p* = -(p - a cos y - b sin y).

Thus

dy* = dy

dp* = ±(dp 4. (a sin y - b cos.cp) dy).

The Jacobian of this transformation is ±1. But since it is the absolute value

of the Jacobian which appears in the formula for a change of variables in a

double integral, we have

dy* dp* = dy dp.

Therefore group invariance, together with the formula for changing variables

in a double integral, gives

Sx f(p'q) dp dcp = $x* f(p*'ce) dp* dce Sx f(p*,Y*) dp dY.

Then since X is arbitrary and any line may be moved into any other line, it

follows that f(p,cp) = f(p*,cp*) cr f(p,cp) = constant. Since we can always

multiply by a constant, we shall normalize so that f(p.cp) = 1. Thus

$
dp dy is the number of lines in a set X of lines, coordinatized by p

anc cp. This number is left invariant if a motion is applied to X.

We now consider a typical problem in integral geometry. Given a curve

C (assumed sufficiently differentiable), how many lines intersect the curve

C? In the counting process we count each line as many times as it intersects

the curve C. More formally, let n(L n C) be the number of points in

L n C. We wish to compute S n(L n C) dL.

In order to make this computation, we choose as coordinates for a line

which intersects the curve, the arc-length s along the curve and 0, the

angle which the line makes with the tangent vector, measured positively. Here

Ogsgk, where X. is the length of C, and Ogegn. It is necessary
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x

to relate these coordinates with p and y before we can make our computa-

tion. We introduce the angle T which the curve makes with the x-axis.

Then the coordinate y of the line is clearly y = 0 + T ± iff. Therefore,

dy = de + icci ds.

If the point (x(a), y(s)) lies on the line x cos y + y sin y - p 0 2

x(s) cos y + y(s) sin y - p = 0.

dx
SIJALTaking differentials and recalling that cTi. = cos T, sin T1 we obtain
ds

after some simplification

dp = (-x sin y + y cos y) dy + cos (cp - T) ds.

a (s ,O)We now compute in two stages:
a (p/cp)

a(slo
a (s)cp)

while

1 0

dT

ds
I
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COS(T-T)

0,0
a(p2cp)

= cos(cp-T).

0 1

But cp = 0 + T ± in. So cos(cp-T) = cos(ein) = ± sin 0. Since absolute

values of Jacobians are desired the sign is of no importance and

'Laza' IILL1/1 la(s,(01 = 'cos (cp-T)1 = isin el.

la (p)cp) I I a (s 2cp) 1 la (p2cp)

Now we use the change of variables formula to transform y n(L n C) dL

and obtain
X n

y no n C) dL = y 'sin el ds de = 2X.

0 0

This result is very surprising. Except for a constant factor, the num-

ber of lines which intersect the curve is the length of the curve. For

example, if a curve of a given length is crushed, to make it wiggle, there

will be fewer lines meeting the curve, but these lines will meet it more often

to compensate.

We make a few observations concerning this result. For a segment of

length X, each line which intersects the segment intersects it only once.

The one line which is determined by the segment meets it infinitely often, of

course, but one line by itself is of measure zero and can be ignored. For the

boundary of a convex curve of length X, each intersecting line will meet it

twice, with the exception of the

supporting lines. But the

supporting lines form a set of

measure zero, so they may be

ignored. Thus for a convex set

in the plane, the number of
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lines which meet its boundary K is X, the length of K: S dL = X.
LflKLØ

Before leaving the subject of integral geometry, I would like to mention

that this topic would make an excellent course. The problems are always well

liked by all the students who can be interested at all. There are also general-

izations to space. For example, the density of planes in space. The number of

planes which intersect a space curve, counted as many times as they intersect

the curve, is again an absolute constant times the length of the curve. Simi-

larly the number of lines which intersect a surface, each counted as many times

as it intersects the surface, is an absolute constant times the area of the

surface. These results generalize to r-dimensional surfaces in n-space,

where we count the number of (n-r)-dimensional planes which intersect the sur-

face, with the correct multiplicity.

Another example is the following one. Suppose C1 and C2 are two

smooth curves in the plane. Suppose C2 is kept fixed, but C1 is rigidly

moved to all possible positions. We obtain a density for the various images

of Ci, which we may denote dC1. Then we find

$ n(C1 n c2) dC. = 4X(C1)X(C2).

As far as the possibilities for teaching this subject are concerned, the

only difficulty is the use of the Jacobian in the change of variables formula

for a multiple integral. But if we stay in the plane, even this amounts at

most to a 3 x 3 determinant, If the elements of multilinear algebra are

known, then the derivation of the formula for a change of variables is very

easy and all of these results can be proved very simply.

We shall now see how these ideas can be used in the calculus of variations.

Recall that if f(x,y,y') is a function of three variables, one of the prob-

lems in the calculus of variations is to find a function y = y(x) which is
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an extremal for y f(x,y,y') dx where the endpoints of the curve y(x) are

given. The classical Euler equation gives a necessary condition that y be

an extremal:

a
2
f ," a

2
f a

2
f af 0

-67-7 ayayl ayax ay

where x, y, and y' are taken to be independent variables for the computa-

tion of the partial derivatives. The solutions y(x) of this equation may

maximize the given functional, minimize it, or do neither. They are called

extremals in all cases.

Darboux posA the follawing problem. Suppose that in the plane we are

given a two parr4leter system of curves. Then can this system be regarded as

the extremals of a variational problem? His method was roughly as follows.

We can consider this system as the solutions of a differential equation

y" = cp(x,y,y'). If cp(x,y,y') is substituted for y" in Euler's equation,

we obtain a partial differential equation for f, as a function of the three

independent variables x,y,y'. Finally, using the appropriate existence

theorem, we can solve the equation, at least locally for f. Som of the

details are omitted, of course. Geometrically we would want to consider verti-

cal lines. Also, the exact meaning of a two parameter system of curves has

been left open. But it is clear that the solution by this method is local.

Furthermore, all that is knawn is that the given curves, even locally, are

extremals of the problem. Nothing is known about the question of whether they

are minimal curves, etc. (Darboux was actually interested in minima.)

Before going into the precise statement of the result, I would like to

sketch the idea. Our method will give alobal results, and furthermore the

given curves will turn out to be unique minimal curves for a variational

problem.
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Assume that the curves are parametrized by points in the (u,v)-plane.

Thus each (u,v) is mapped into a curve L(u,v) of the given system, in a

one-to-one way. Since the curves are not necessarily graphs of functions

y = y(x), we should consider curves in parametric form, and similarly express

the variational problem as a minimization of S F(x,y,*4) dt. What we shall

find is not F itself, but the value of F integrated along a curve of the

given system. Then, by differentiating, we shall be able to recover the

function F. Therefore, we shall find

X(A) = SA F(x,y,X,S7) dt

where A is any curve, or portion of a curve, of the given system. We shall

arrange to have X(A) equal to the length of A in a suitable geometry, and

the curves of the system the "lines". In this case, the triangle inequality

"the line is the shorteFt path between two points" will show that the curve A

minimizes the length between

two points. Thus we shall need

to have the triangle inequal-

ity. Now suppose that al

and a
2

are joined by a curve

of the given system. Take an

arbitrary point b and join

b to a. by the curve B.
1 1

of the system. What is

required is the inequality:

Length B1 + Length B2 Length A

with equality if and only if b is a point of A.

It is here that integral geometry gives us the leading idea. Although
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integral geometry is not used, no one could get the idea of this approach

unless he has seen some of the ideas of the subject. We remember that the

length of a segment is, up to a constant factor, the number of lines which

intersect that segment. Therefore, all we need is a density for all the curves

of the system, and we could compute this number, and hence the length of any of

the curves of the system. Since we are not concerned with rotations and trans-

lations, we may choose an arbitrary positive continuous function cgu,v) as

a density, and use dL(u,v) = cgu,v) du dv. We now define the length x(A)

by the formula

X(A) = dr4u,v)
Lnti 0

and we maintain that this gives a length function in the sense described

above.

To see this, note that if b is on the curve A, then any curve which

meets A meets either arc a
1
b or ba

26
However, the curves which meet both

al

of these arcs form a set of measure zero in this density, and we have

X(A) = X(B1) X(B2). On the other hand, if b is not in A, every line

which intersects A will intersect B
1

or B
2'

This proves the triangle
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inequality. To obtain the strict inequality, we observe that there is an open

set of :lines which intersect both B
1

and B
2

and not A, and this set has

positive measure. This proves the strict inequality in this case.

Thus the idea is quite a simple one, but it probably would not have been

conceived unless one had already seen integral geometry.

lo make the argument more rigorous, we must describe the curve system E

more accurately. We first suppose that the curves are given by coordinates in

the plane. We suppose that each curve of a system is an open Jordan curve,

and may be parametri.zed by a function

P = P ( t ) -cc t <

where

P(t1) P(t2) if t1 t2.

Furthermore, we require that P(t) diverge as ltvl -4 co. We also require

that any two distinct points belong to exactly one curve in E.

A flaw in the reasoning is the assumption that the curves are parametrized

by the points in the plane. If a b and if av -4 a and bv b it is easy

to prove that, for the curves, Lv -) L. Indeed the curves form a topological

space which can be shown to be a two-dimensional manifold. But what sort of

manifold is E? The curves of the system through a point cannot be contracted

to a point. Thus E cannot be a plane. However, it can be proved that this

space is topologically the projective plane with one point removed, just as it

is in the simple case when all the curves are lines. We can then use the

measure dL in the projective plane, and define the length

(A) = r

'14 n A 0 g(L) dL

where g(L) is an arbitrary continuous positive function, and the argument

goes on as before.
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Having gone this far, we can answer some other questions. First, we can

make every line of finite length if g(L) is bounded. Can we make every line

have infinite length in both directions? This can be done with some effort by

adjusting g(L).

We can consider a similar problem for curves in the projective plane.

Here, the projective lines are homeomorphic to a circle, and any two distinct

points determine a line. Suppose we consider in the projective plane P
2

a

system E of curves in P
2

in which each curve is homeomorphic to a circle

and for which any two distinct points lie on exactly one curve in the system.

.

Is it then possible to find a metric in P
2

In which these curves are geo-

desics? (Since the projective line is not the shortest distance in the large,

we can only expect a local result.) The method used to prove the result in

the plane broke down in this case, and was saved with great effort by

Skornyakov. However, this result is entirely trivial using the method suggest-

ed by integral geometry. Here we prove that the curve system is homeomorphic

to the projective plane. We can thus use the projective density and weight it

with any positive continuous function. What is the length of an entire curve?

Because every curve must intersect it, the integral determining the length will

be taken over the entire space of curves, and therefore the length has a con-

stant value 2k. This illustrates the general theorem that for any metrization

of the projective plane the length of a line is a constant. An arc of a curve

in E of length less than k strictly minimizes length.

Now assume that the system E has some mobility. That is, suppose there

are some collineations. Of course, by a collineation in this case we mean a

topological map of the underlying space of points (the plane or projective

space) which sends the system E into itself. Is it then possible to find a
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metric which is invariant under all of these conditions?

In general the answer is no. For example, in the projective plane, it

cannot be true of the projectivities, since a projectivity can send a segment

into a proper subset of itself. However, it is possible to give a simple

answer if the group is a compact group. In this case, choose one metric and

then average it over the group. These considerations solve the problem for the

projective plane. For if a compact space has a metric, then the group of all

its metric preserving collineations must be compact. Therefore, for a syttem

of curves E in the projective plane, it is necessary and sufficient that a

group of collineations be contained in a compact collineation group in order for

there to exist a metric invariant under those collineations.

We now give an example of a system of curves in the plane, which shows that

there is no analogue for this result in the plane. The system will be invariant

under all translations, but there will be no metric (for which the curves are

geodesics) which is also invariant under translations. The system includes
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1) All lines with slope g 0.

2) All lines whose equations are of the form x = constant.

3) All translates of the branch of the hyperbola xy = -1, -00 < x < 0.

It may be verified that this system has the property that any two distinct

points of the plane lie on exactly one of these curves. But it is known that

the only geometry invariant under all translations is a Minkowskian geometry,

which has the straight lines as geodesics. Thus there is no translation in-

variant metric on the plane with this system of curves as its geodesics.

The example also illustrates a point in the theory of parallel lines

which was considered here by Coxeter and which we shall need later. (de can

also use the term asymptotes instead of parallels for the same idea.) It is

a usual result, if A B, then B A. I should like to point out that this

result depends on the mobility of the plane, that there is a sufficiently large

group of motions on it. To find a parallel to a given line A in a given

direction from a point p, we consider the llnes pq, where q traverses A

in one direction. Then the limiting line exists and is defined to be the

01\ B

A/B is the C/
parallel
to A from p.

C is the
parallel
to B from q.
A is not
parallel
to B.

parallel B to A through p. The diagram shows that this is not a symmetric

relation in this geometry. The usual proofs from the axioms of hyperbolic

geometry use mobility in some way.
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If we consider the analogue of this problem on more general surfaces, we

encounter a discrete group of motions. For example, consider a system of curves

on a cylinder which, in the language of the calculus of variations, "has no

conjugate points." This means that if we take the plane to be the universal

covering space of the cylinder, then the system of curves in the plane over the

given system on the cylinder is a curve system in the plane of the type we have

been considering. After the cylinder is "unrolled" we have a curve system E

in the plane. But we must obtain a metric in the plane which is invariant

under the translations which correspond to the identity transformation of the

cylinder. This is a discrete group, generated by one translation T. What is

the general situation? Can one always find such a metric?

The answer is negative. The condition for the existence of a metric in-

variant under a discrete group of translations can be nicely stated, although

there is not enough time to give the proof. We first define an axis of a

translation T as a line mapped on itself by T.

Then, if T does not have an axis, the problem has a solution. For ex-

ample, if we revolve a branch of a

hyperbola about one of its asymptotes,

we obtain a surface of negative

curvature, which topologically

is a cylinder. The rotation of

this surface through 2a can be

represen-ed in the plane by a trans-

lation in the direction of the x-axis

of length Za. But an axis cor-

responding to this translation
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is any of the orbits of a point on the hyperbola. These circles are not lines

on the surface of negative curvature. Thus, for example, T has no axis.

But if T has an axis, a necessary and sufficient condition that there

is a metric invariant under T is that for any point P the lines Ln

through P and TnP should converge towards a line which is parallel (or

asymptotic) to the axis of T.

This property may be illustrated nicely by referring to the example given

above of lines and hyperbolas in the plane. We may easily verify that if a

translation has a positive x-component and a positive y-component, there is no

axis. For this case, therefore, there is a metric invariant under T. If the

x-component is positive, but the y-component is negative, then there is an

axis, but the above condition is satisfied. However, for a translation with

no y-component or with no x-component, the above condition fails, and there

will not exist a metric for this system of curves invariant under this trans-

lation.

Suppose, instead of a discrete group of translations generated by one

translation, we have a continuous one parameter group of translations. In this

case we can show that there is a metric invariant under this group which has

the given family of curves in the plane as its geodesics if, for one of these

translations not equal to the identity, the above criterion is satisfied.

(This is clearly also a necessary condition.) The reason is that after we

factor out this translation we are left with a compact group.

For my concluding example, I would like to consider a system E of

curves on a surface of genus p > 1, and ask when such a system constitutes

the geodesics on this surface without conjugate points. In this case, we can

represent the universal covering space by the interior of the unit circle. We



shall use the Poincare model for hyperbolic geometry in order to obtain the

appropriate theorem for the system E.

Suppose that the system E goes over into a system E' in the unit

circle. Suppose that for E', ara two 22ints determine a unique curve. Just

as certain translations of the plane correspond to the identity transformation

of the cylinder and certain translations of the plane correspond to the identity

transformation of the torus which it covers, so there are certain covering

transformations of the hyperbolic geometry which correspond to the identity

transformation of the given surface of genus p on which the curves of the

system E lie. The system E' is invariant under the covering transforma-

tions. We postulate that for each covering transformation which has an axis,

the curves L
n

determined hy. p and T
n
p must approach an asymptote to this

axis. We can prove then that each curve of the system meets the circle

= 1 in two distinct points. (This is to be interpreted in a limiting

sense.) We then further assume that a curve of E' is uniquely determined

:tits end-points. With these assumptions, we can state that the given

system is a system of geodesics for a suitable metric.

To see this, we note that there is a density for the lines of the hyper-

bolic plane which is invariant under all motions of this geometry. Since we

are postulating that a curve of the system E' is determined by its end-points,

we can transfer this density onto the curves of the system E'. This density

can then be used to define length for curires in the system E'. It has the

proper invariance and hence this length may be transferred onto the given

surface of genus p. This solves the problem.

We conclude with the remark that the problem in the large for surfaces of

genus p would be quite hopeless without this idea borrowed from integral

geometry.
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Discussion.

The question of generalizing this type of problem to space was considered,

It was observed that in this case the situation is more complicated. It is

known, for example, that it is not sufficient that two points uniquely deter-

mine a curve. For in the plane, curves separate the plane, and many arguments

about crossings go through. But this is not true in space. In 3-space,

Douglas gave necessary and sufficient conditions for a solution, locally, in

the sense that the curves are extremals for a problem in the calculus of

variations,



SOME COMPUTATIONAL ILLUSTRATIONS
OF GEOMETRICAL PROPERTIES IN FUNCTIONAL ITERATION

Lecture by Glen Culler

(Lecture Notes by Melvin Hausner)

[Professor Culler's talk used, in an essential way, a keyboard connected

to a digital computing machine, and a television screen which was used to dis-

play graphs, figures, and some of the instructions to the machine. There were

many screens, so each member of the audience had a clear view. The resulting

demonstration was most impressive and informative, but the format makes it

impossible to do justice to the material by paraphrasing the talk. The follow-

ing outline, then, makes no attempt to reproduce the lecture. Instead we sum-

marize some aspects of the programming language and some of the problems cover-

ed in the lecture.

Finally, we append some photographs taken directly from the display screen.

It should be pointed out that all of these examples were done on the spot.

There was no preliminary programming, taping, prepared films, etc.]

1. The Machine.

The operator works on a double keyboard. The bottom half is essentially

a single case typewriter keyboard, and it is used for the operands (numbers,

functions, etc.). The upper keyboard is used for operators, and contains

various mathematical operations such as addition, multiplication, cosine,

logarithm, etc. Thus the cosine button will carry out the operation of taking

the cosine of a number or list of numbers (stored in the machine) when touched.

The operator keyboard has buttons corresponding to "Levels," labeled I, II,...,IX,

and USER. The operators take on a different meaning according to which of these

level buttons has been depressed. For example, on Level I each operand cor-

responds to a single number. On Level II each operand corresponds to a list of
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real numbers. Thus functions can be handled since a function is determined, as

far as the machine is concerned, by a list of the values f(xi), i = 1,2,

On Level II the operators act on these lists. Level III corresponds to oper-

ations on complex lists. These lists may be regarded as representing polygonal

paths in the plane.

For example, to operate with a single number, we use Level I. The prob-

lem of finding log (2.27), which was illustrated in the lecture, is done by

first pressing the Level I button, then instructing the machine to Load 27,

multiply by 2 and take the logarithm. This is accomplished by pressing:

I LOAD 27 O2LOG

(the underlined words are names of the operation buttons).

At each stage, the intermediate answer will appear on the screen if

ordered to do so. The variables used are the letters A through Z which

appear on the lower (operand) keyboard. Within the memory of the machine

there are two data blocks designated as the X-register and Y-register. These

provide storage for lists of X and Y coordinates and the contents of these

registers may be selectively displayed either numerically or graphically.

Figure 1 illustrates this display, where:

-1 s X s 1, Y = X2 - 1.

Most of the operators on Level II only transform the values in the

Y-register, as appropriate for the composition of real functions. On Level III,

the X and Y registers are taken together as a path in the complex plane.

Both X and Y change with the operations.

The language is so set up that a function of a function is easily expres-

sed. Thus complicated functions are easily built up out of the listed simple

ones. For example the graph of Y = e
-lox2 can be found by first starting

with the identity function (Y = X), squaring, multiplying by -10, and
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exponentiating. All of this was done by pressing suitable buttons as follows:

II ID SR 0 -10 EXP Display Return

The sequence of transformations is:

II = Prepare to do operations on lists of real numbers.

ID = Build N values from -1 to 1, equally spaced, store

them in both the X and Y registers.

SQ = Square each number in the Y-register.

0 -10 = Multiply each number by -10.

EXP = Exponentiate each number.

Display Return = Display the present Y coordinates graphed

against the present X coordinates.

The values are computed for N g 124 numbers, which can be placed in the

machine. The range of the ID operator is from -1 to 1, although this

range may be easily changed by multiplying or adding constants. There is

automatic scaling in the Y-axis, by successive powers of 2. At any time,

the operator may find this power of 2 by "asking" the machine for it.

Derivatives are found by forward differencing (there is a button, DIFF, which

does this), and they may be found successively. Figure 2 shows what appears

on the television screen for the successive differences of Y = e-lox2 . In

Figure 3, one can observe the effects of loss of accuracy due to the finite

num rical representation of our numbers, and the use of successive differencing.

Similarly, integration is obtained by summing, or by some variant, such as

Simpson's Lule.
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2. Some Problems.

The following are some of the problems and techniques worked out during

the lecture. In all cases, each step was or could have been seen on the

screen. In fact, an important practical use of this procedure, other than

pedagogy, is that the immediate visual solution to a problem, such as one

involving successive approximations, shows the user if he is on the right

track. Furthermore, this visual method often will suggest a better approach.

a. Find and plot the function and the successive derivatives of

y
-10x2

= e (Figure 2).

b. Using a smoothing procedure, reconstruct a function from one which is

widely distorted. The smoothing procedure--applied repeatedly--replaced each

y value yi by the average of yi-2, yi-1, yi, yi+1, yi+2. See Figures 4

and 5 for the results.

c Find successive approximations to the differential equation

dy/dt = ty - 1 using the Picard iteration scheme. Find the solution which

is bounded at infinity by this method. In this example, the initial variation

in the successive approximations suggested better initial guesses (see Figures

6 and 7).

d. Successive approximation is often very slaw if the various approxima-
MN/

tions "spiral in" to the answer. This may be compared with a radial approach

in which we may put xml. = x
n

Xx
n-1

for suitable X, speeding up the

process considerably. The figure

illustrates the uselessness of this

procedure for a spiralling approach.

However, if after a fixed number of
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of steps, we approximately repeat except for a constant factor, then a better

approximation would seem to be the average of this num,t of successive

approximants. In the figure, this number is four. In the problem presented,

we were in function space. The integral equation

y(s) = g(s) + YK(t-s)y(t)dt

was to be solved by the iterative scheme

Yn+1(s) = g(s) + SIC(t-s)yn(t)dt.

It was observed that after four steps, the new function has approximately the

same shape as the original one. This averaging procedure was applied (again

and again) speeding up the process. (See Figures 8, 9, 10.)

e The effects of various conformal maps were illustrated. The maps

1.5 1.5 0.21
w = Z 2 Z were illustrated by their effect on an ellipse. (See

Figures 11 and 12.) Also, the effect of ez on a rectangle in the upper half

plane was illustrated, first for the simple case 0 g x N 1, 0 y g 2n*,

and then after tilting this rectangle slightly by multiplying it by 0.9 + 0.1i.

(See Figures 13 and 14.)

In conclusion, the ease with which graphs and mappings could be construct-

ed, stored, used, and visually presented was quite striking and impressive.
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GENERALIZATIONS IN GEOMETRY

Lectures by Preston C. Hammer

(Lecture notes by Melvin Hausner)

Lecture I.

My talk today is about certain general principles which I will apply to

geometry. Specifically, I wish to talk abaut the topology of convexity, and to

consider certain topological ideas which generalize to the theory of convexity.

We first note that an arbitrary intersection of convex sets is convex.

Analogously, an arbitrary intersection of closed sets is closed. In topology,

we have the operation of taking the closure of a set, while in the theory of

convex sets, we have the operation (on sets) of taking the coavex hull of a

set. We are therefore led to consider mappings from subsets of a given set into

the class of subsets of that given set.

Definition 1. Let E be a given set. The power set PE of E is

defined to be the class of subsets of E. We let N denote the null set of E.

The two operations menttoned above are thus mappings f: PE -4 PE. We

denote the closure map by u, and the convex hull map by h. Thus uX is

the closure of X, while h.X is the convex hull of X. We may now make the

following general definition.

Definition 2. Let f: PE -4 PE. Then a set X is said to be f-closed

provided X g Y implies X g fY.

In this case, we may show that the arbitrary intersection of a class of

f-closed sets is an f-closed set.

Note that in topology the u-closed sets are precisely the closed sets,

while analogously, the h-closed se*-1 of a vector space are precisely the convex

sets.
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We can also give properties of the convex hull operation h which corre-

spond to similar properties of the closure operation u in topological space.

These are stated below as axioms. We assume that h is a mapping of PE into

PE.

Axiom 0. hN = N. (Recall that N is our symbol for the null set.)

Axiom 1. hX Q X. (This is called the enlarging axiom.)

Axiom 2. h(X U Y) hX U hY. (This is called the isotonic axiom.)

Axiom 3. hhX g hX. (This is called the subpotency axiom.)

Clearly Axioms 1 and 3 imply that h is idempotent: h
2
= h, or equi-

valently hhX = hX. We also note that Axiom 2 is equivalent to the property

that h preserves inclusion: X g Y Lmplies hX g hY.

We note that if we add to Axiom 2 a sub-additivity axiom

h(X U Y) g hX U hY,

we obtain the usual Kuratowski axiom system for the closure operation. Never-

theless, the closeness of the axiom systems leads us to expect that the methods

of one might be used in the other.

In general, we may define f-open sets as complements of f-closed sets.

We use the notation cX for the complement of X. Thus, c: PE -0 PE. We are

thus led to the notion of a co-convex set. This is defined as a set whose

complement is convex, or equivalently, as the complement of a convex set.

Clearly the co-convex sets are the h-open sets.

We may set up a concordance between topological ideas and ideas of convex

set theory. The following is a partial listing:

Topology Topology of Convexity

Closed set Convex set

Open Fet Co-convex set

Closure of X Convex hull of X
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Interior of X (cucX)

Isolated points

Dense in E

chcX

Extreme points

hX = E

We also note that p E hX if and only if every h-open set containing p

meets X.

We now go to the Euclidean plane E
2

and consider neighborhood systems

there. If p E E
2

, we wish to form a basis for the neighborhoods of p in

the convex topology introduced above. Since we want small open sets which

contain the point p, we may equivalently ask for large closed (i.e., convex)

sets which exclude the point p. For the plane, we may actually find the

maximal convex sets excluding the point p. These sets may be described as

follows (see the figure): Consider any line L through p. Let S be the

set consisting of one of the

open half-planes determined by

L, and one of the open rays in

L determined by p. We call

\\
such a set a semispace S. The

//
complement of such a space is

/

771\ called a co-semispace S*. (rhis

procedure is easily generalized

to higher dimensions.)

Theorem 1. The semispaces at p are the maximal convex sets which

exclude p. Thus, if X is any convex set not containing p, there exists

a semispace S at p which contains X. Furthermore, no convex set can

properly contain a semispace S at p and exclude p.

We shall prove the maximality of the semispace S at p. Suppose X

is a convex set containing S properly. Let q E X, but q S. If we
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reflect the entire plane through p, it is easily seen that the plane is

partitioned into S, the reflection 5' of S and (0. Since q S, we

have q = p or q E S'. If q = p, X does not exclude p and there is

nothing to prove. Thus we may assume q E S'. Therefore the reflection q'

of q through p is in S, and hence in X. Since both q and q' are in

X, it follows by convexity that their midpoint p is also in X. Thus X

cannot exclude p.

To show that the semispaces are the only such maximal convex sets is not

difficult. On the one hand, it may be proved as a consequene of the separa-

tion theorem. On the other hand, a direct proof is possible, and the separa-

tion theorem may be shown to be a consequence of this result.

Theorem 1 shows that a basis for the neighborhoods of p consists of all

the co-semispaces S* at p. We then have the usual topological result that

p E hX if and only if X n s* N for every co-semispace at p, a result with

convexity implications. Similarly, the class of all semispaces is the minimum

intersection basis for the class of all convex sets. (As usual, the empty

intersection is taken to be the whole space.) Some other properties of semi-

spaces are as follows.

1. Let S be any semispace at the origin. Then the class of all trans-

lates [p +SI pEE2j is linearly ordered by inclusion. Furthermore, if

p / q, then p + S q + S.

2. Thus, the semispace S determines a linear ordering g of E
2

,

where p g q if and only if q - p E S.

3. S is a semigroup with respect to vector addition. I.e., p2 q E S

implies p + q E S. Moreover, p E S and r a positive number implies

rp E S. Thus S is a convex cone with the origin as a vertex. Moreover S

is maximal among semigroups which exclude the origin.
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4. A point p is an extreme point of a set X provided p E X and

there exists a co-semispace at p which contains X.

Further Closure Functions. If we consider the plane as the Cartesian

product of two lines, we may imitate topologists to obtain further results.

On the line, the neighborhood base (in convexity) of a point p consists of

the two closed rays emanating from p. Therefore it seems reasonable to take,

as a system of neighborhoods of a point p of the plane, the four closed

quadrants determined by forming the Cartesian product of each of these neigh-

borhoods of the y-coordinate. To retain the rotational symmetry of the plane,

let us stipulate that a neighborhood of a point 2 is any closed quadrant Q

with vertex at p. Similarly, we may define neighborhoods Qi of p, as

quadrants which are half-closed, and neighborhoods Q
0

of p as open quad-

rants (with the vertex p adjoined). We therefore have three different neigh-

borhood systems for E
2

. As in topology, we may define closure with the help

of a neighborhood system. Thus, we make the following three definitions.

Definition 3. The f-closure of a set X is defined by the condition:

P E fX if and only if X n Q N for each closed quadrant -1:i with vertex

at p.

Definition 4. The L.-closure of a set X is defined by the condition:

P E g if and only if X n Q N for each half-closed quadrant Q1 with

vertex at p (including p),

Definition 5. The h-closure of a set X is defined by the condition:

p E FIX if and only if X n Q0 N for each open quadrant with vertex at

p (including p).

The above closure u is not to be confused with the previously considered

h, which was the convex hull function.
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All of these functions may be verified to be closure functions in the

sense of our Axioms 0-3. Intuitively, the f-closure of a set X consists of

all points from which it is impossible to view a full angle of 17/2 of empty

space (i.e., of cX).

We can now state and prove theorems analogous to the Caratheodory theorem

in the plane. We first recall that theorem. If we let kX denote the usual

convex closure of X, Caratheodory's theorem in the plane states that each

point of kX is in some set kY where Y has three or fewer points and

Y Q X. If we let IY1 denote the cardinality of Y, then the theorem of

Caratheodory states that kX = U(kY
I

Y X, IY1 N 3). Clearly the number

three cannot be reduced.

Theorem A. If p E hX, where h is the hull function based on the

open quadrant neighborhoods, then there exists Y X, IYI N 8 such that

p E hY. The number 8 is best possible.

Proof. If p EX, the result is trivial. Now suppose p X. Let A

be a circle with center at p. We radially project X into A along the rays

of p to obtain an image set Z. Clearly, p E hX if and only if p E hZ.

Also, if p is in the closure hY, with Y Z, and IYI = n, then (using

the axiom of choice) we may find a set Y1 X such that p E hY1 and

1Y1
= n. Therefore, with no loss in generality, we may assume that X s; A,

the circle centered at p.

For each point q on the circle A, let A(q) be the open arc of A

which subtends a 900 angle at p and which is "centered" at q. It is an

easy matter to verify that p E hX if and only if A = U(A(q)
J
q E X). Thus,

if p E hX, the compact set A is covered by a union of open arcs A(q) with

q E X. Hence it may be covered by a finite subset of such arcs. We let

be such a set. We suppose with no loss in generality that
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k is minimal, so that no set of k-1 arcs A(q), with q in X, covers A

For convenience, let us replace the points qi,...,qk on A by their

angle coordinates 00,...,0
k-1

, letting 00 = 0 = q
1

. Let Y = te0,""ek-13.

By relabeling, if necessary, we may assume 01. * 01.41 and Ok_l < 2r. For

convenience, we set Okii = 0
i
+ 217 (i = 0,1,...,k-1), and 0

2k
=

I claim that 0 - 0
i

a for i = 0,1, ,2k-2. To see this, note, for
i+2 2

example, that if 0 - 0 < IT- then 0
1

may be dropped from the set Y, re-

taining the covering property of Y, but reducing the number of elements in

Y. This contradicts the minimality assumption on k. Therefore, we have

2k-2

(ei+2

kn .

ei) = 2

i=0,2

(rhe notation means that i increases in steps of 2: i = 0,2, ,2k-2.) But

we also have
2k-2

(ei+2 ei) 4R.

i=0,2
ku

Hence 2 * Lir. Therefore IY1 = k * 8.

To show that 8 cannot be replaced by any smaller number, it suffices to

give a set for which 8 points are necessary. The above proof shows that the

only possible set of this kind is one which intersects each of eight rays

through p, formed by two

pairs of perpendicular lines,

and which lies on these lines

(as indicated in the figure).

It is easily seen that for any

such set, eight points is the

minimum necessary to span p.

In any other case, at most seven
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points are required.

By refining the arguments above, we can show that the "Caratheodory

number" for the hull function g based on half-open quadrants is 7. Thus, if

p E gX, there exists a subset Y of X with p E gY and IY1 g 7. The

number 7 is minimal. However, the Caratheodory number for the hull function

f is /ko. This may easily be seen by choosing the set X to be the half-

open 270° arc with center at p. Clearly, no finite subset will contain p

in its hull. The entire procedure can be generalized to sectors subtending an

angle 0. The result is stated here.

Theorem B. Let 0 < 0 g rr. Let 20, go, he be hull functions corres-

ponding to closed, half-closed, and open sector neighborhoods. The neighbor-

hood of a point p is taken to be a sector having angle 0 and vertex at p.

Then

hoX = UCheY I Y g X, IY1 g [47/0]],

g
o
X = U(g

oY
I Y g X, IYI g n = maximum integer < WO),

f
o
X = U(f

oY
I Y g X, 1Y1 o

3.

In each formula, the bound on IY1 cannot be decreased.

Further Generalizations. It is possible to generalize many of the above

procedures. The objective is to find out more about why certain results in

convexity hold and to use these insights for the development of systems applic-

able to a wider range of problems.

Suppose E is any set. Let RgEXE beatransitive relation on E.

We define u(p) = (q I (p,q) E R). Then we may interpret u(p) as a "cone"

with vertex at p. We may also define an associated "closure" function

f: PE -4 PE by the condition p E fX if and only if X n u(p) N. (Again,

N denotes the null set of E.)
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Theorem. The function f defined above preserves inclusion and is sub-

potent (i.e., ffX g fX for all X g E). Moreover, f is a closure function

if and only if R is reflexive.

We omit the proof of this result.

Definition. A point p E X is a u-extreme point of X provided that

either Xnu(p) =N or qEXnu(p) implies (q,p) ER.. Each transitive

relation R generates a strict order relation < defined to be the condition

p < q if and only if (p,q) E R but (q,p) R. A set A is u-compact if

each complete chain of elements of A has a maximum element.

We may generalize the results above by considering many "cones" at p.

LetT=.(11.1i E I) be a collection of transitive relations in E, in-

dexedbyI.Wedefinethesetsu.(p) and the function f. relative to

therelationR..We then define a new function f: PE -* PE by the formula

f = n f.. Equivalently, p E fX provided X n ui(p) N for all I E I.

Thus p E fX if X meets all the "cones" associated with p.

Theorem. The function f associated with a collection T of transitive

relations as defined above is isotonic and subpotent. f is a closure function

if and only if each R E T is reflexive.

We omit the proof.

In what follows we shall formulate a few of the definitions and theorems

(without proofs) concerning this general situation of a collection T of

transitive relations on E indexed by I.

Definition. p is a T-extreme point of X if p E X and p is

u.-extreme point for some i E I. For any X E, we let vX be the set

of extreme points of X.

Theorem. The function v defined above is shrinking (vX X) and

idempotent (vvX = vX).
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Definition. A subset A of E is upper T-compact if A. is ui-compact

for every i E I.

Theorem. A necessary and sufficient condition that fY = fX is that

Y fl u(p) N for all i E I if and only if p E fX. A necessary and suffi-
i

cientconditionthatfY=awhenYQXisthatYnu.(p) N for every

P E fX. In particular, fvX = fX if and only if vX n ui(p) N for all

I E I and p E fX.

I point out that I know of no theorem stated in convexity theory which

is as powerful vis-a-vis extreme points as this theorem is when specialized

to convexity the.ory.

Theorem Let X be an upper T-compact subset of E. Then fvX = fX.0
We conclude by giving a wide class of examples. Suppose (E,.) is a

semigroup. If S is any sub-semigroup, we may define the relation

R = ((p,q) I q E pS). It is then easy to verify that the associative law

implies that R is transitive. However, transitive relations need not, in

general, be of this type.

Discussion.

The theorem on extreme points was given explicitly for convex sets, as

follows:

Theorem. Let X be a convex set, and let Z be the set of extreme

points of S. Then X is the convex hull of Z if and only if Z n s* 0 N

for every co-semispace about every point p of X.

It was pointed out that neither boundedness nor compactness was required.

As an illustration, the interior of a parabola, together with a set of points
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dense on the boundary, is a set which is the convex closure of its extreme

points.
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Lecture II.

Today we shall confine ourselves to the study of connectedness and its

generalizations. Historically, connectedness was used for a long time before

a formal definition was givc.n. Probably the geometers needed it first. In

analysis arc-wise connectedness was a useful notion. G. Cantor once proposed

a definition which was not adopted,. (Ris definition would make a set connected

if its closure is connected in the current topological sense.) If we use the

notation fX for the closure of X, and N for the null set of a space M,

then the current definition (due to Riesz, according to Thron's book) is as

follows.

Definition. The sets X and Y are said to be separated provided

any=ii=xnff.

A set Z is connec.ted if it is not the union of a separated pair of non-empty

sets. Equivalently, Z is connected provided that if ZgXUY, where X

and Y are separated, then Z g X or Z g Y.

If we introduce the binary relation R (on the power set of M), de-

fined by

R = ((X,Y) I X and Y are separated),

we can rephrase the definition in a way which is capable of being suitably

generalized. Thus Z is connected provided that if ZgXUY and

(K,Y) E 112 then Z g X or Z g Y. We note that if R is anz relation on

PM, the null set and the singleton sets are necessarily connected in this

sense

We now let M be a space, and let N denote its null Set. The power

set PM is the class of all subsets of M. Let R be a relation on PM,

i.e., R is a subclass of PM X PM.
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Definition 1. R. is a separation provided (K,Y) E R, X1 c_. X, Yl g Y

imply (X1,Y1) E R. R is exclusive (or disjunctive) provided (X,Y) E R

implies X n Y = N. R is symmetric provided CK,Y) E R implies (Y,X) E R.

Finally, R is a Wallace suaration provided R is a symmetric and exclusive

separation.

Clearly, the usual topological separation is an example of a Wallace

separation. Cantor's idea was to use the (Wallace) separation

R
c
= ((X,Y) I fX n fY = N3.

D-inition 2. Let R be a Wallace separation. The set Z is R-con-

nected provided that if ZgXUY, (X,Y) gR, then Z c_X or Zg Y.

We remark that we can replace all inclusions by equalities, since we

can always consider z n u y), z n x, and Z n Y. However, the above

definition is more useful,

We now note that the null set N and the singleton sets are necessarily

R-connected for every Wallace separation. If f is the Kuratowski closure of

a topological space, then the separation

R(f) = ((X,Y) lany.N.xn fy)

is called a topological separation. It is a Wallace separation and it yields

the usual connected sets in the sense of topology. We also remark, in passing,

that the "major" theorems about connectedness hold in the more general setting.

At any rate, it is surprising what does hold. Let us start with an example,

Example. Let M be a metric space, for example the plane. Let t > 0

and let d denote the distance function on M. Define

R
t
= ((X,Y)

I

p E X, q E Y imply d(p,q) t3.

Then it is easily verified that Rt is a Wallace separation. Now it is a

theorem, which we leave as an exercise, that a set A is Rt-connected if and
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only if for every pair of points p and q in A, there exists a sequence of

points al,...,ak in A such that al = p, ak = q, and d(avai4.1) < t for

i = 1,...,k-1. This is surely a reasonable form of connectedness. We note

that the unique decomposition into maximal Rt-connecced components is an

immediate consequence of this notion. Also, using this example, we may easily

construct an irreducibly connected finite set joining two points.

A. D. Wallace, after whom these separations were named, discussed separa-

tions but not connectedness in 1941. Following Wallace, we introduce the

function W
t

by the formula

W(X) = (P I
(POO Rt).

Intuitively, we take all points p close to (i.e not separated from) X.

(We have identified p with its singleton set.) In this example,

W(X) = U(S(p,t)
I

p E Xj

where S(p,t) is the open disk of radius t centered at p. Thus W(X)

is always open. We have the following properties.

O. WtN = N

1. WtX X

2. Wt(X U = W(X) U W(Y)

This latter result may be generalized to arbitrary unions. We note that Wt

is not idempotent, and it is therefore not a closure function. Wallace showed

that for T
1
-spaces, W

t
would have to be a closure function if R

t
were a

topological separation. Thus, this separation is not a topological separation.

We naw introduce the conjugate Wallace function Wt*.

Definition 3. Wt*X = n(aty I (X,Y) E Rd.

We recall that we are using the notation eX for the complement of X.

We may also describe Wt*X as the set of all points which are separated from
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all sets Y which are separated from X. It can also be shown that

Wt* = atat (i.e., W
t
*X = cW tcWtX for every set X). It may also be shown

that W
t
* is a closure function in the sense of my first talk. We illustrate

W
t
* in the accompanying diagram. The set X is taken to be the vertices of

an equilateral triangle of side

s. Suppose t < s but t is

near s. Then W
t
X is the

union of the three open disks

centered at the points of X.

The set W
t
*X is the shaded

region. We can make several

assertions about Wt*. First,

W
t
*X is always a closed set

containing the usual closure of

X. In the plane, Wt*X = X if X is closed and convex. Wo* = nt>0 wt*

is the usual (topological) closure function.

General Theory.. We now return to a general Wallace separation R. We

let CO) be the class of R-connected sets.

Theorem A. If R is a Wallace separation, there exists a unique

maximal Wallace separation R* such that c(R*) = CO).

Thus there is an equivalence relation among Wallace separations: Namely,

two Wallace separations are equivalent if they lead to the same class of

connected sets. The theorem asserts that within each equivalence class, there

is a unique maximal separation. In order to prove this theorem, we first

prove the following lemma, of interest in itself. It states that we may make
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any class of sets connected, tilthough the process will introduce other con-

nected sets in a minimal way. Note that maximizing the -parated sets will

minimize the connected sets.

Lemma. Let C.
0

be a subrJass of FM. Then there exiscs a unique

Wallace separation R such that CO) 2 ao which is maximal with respect to

this property.

Proof. Let R= ((x,y) Ixny= N, and if XUYPAEao, then

A g X or A Y. Then clearly C(R) D 00. Furthermore, no larger separation

will do. Q.E.D.

In Theorem A, replace elb by CO), apply the lemma, and we heve the

result.

We naw define the notion of R-connectedness for classes of sets.

Definition 4. A subclass B of PM is R-connected if B is not the

union of two disjoint subclasses Bo and Bl such that the union sets

X. = Uxa X are non-empty and R-separated.
1

We then have the following result.

Theorem B. A necessary and sufficient condition that the union of a

class of connected sets be connected is that the class be connected.

Theorem B gives all of the component decomposition theorems. For

example, if a class of R-connected sets has a point in common, its union is

connected.

We naw consider maps preserving connectedness. We point out that in the

topological case, continuous maps preserve connectedness, but it is also true

that wildly discontinuous maps may also preserve connectedness.

Theorem C. Let M and H be spaces with Wallace separation R and

S respectively. Let R* be the unique maximal separation in M which yields
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the same connected sets as R (Theorem A). Then a necessary and sufficient

condition that t: M -1,M
1

preserve connectedness is that, if X and Y are

subsets of M such that (K,Y) R*, then (a,tY) S.

It is possible to define the functions W and W* for any Wallace

separation R, by using the same formal definition as in the example. In

analogy with the theorem that the closure of a connected set is connected, we

have the following result.

Theorem D. If X is R-connected, then WX and W*X are R-connected.

In this case, since W and W* are not necessarily idempotent, the

various iterates may yield more connected sets.

We conclude with an example due to Mrowka.

Theorem. In the plane M = E
2

, no topology yields as its class of

connected sets the class of arc-wise connected sets.

For the proof, we need only assum that we have a Frechet space. This

means that the expansive function f satisfies the two conditions fX Q X

and f(X U Y) fX U fY. The separation Rf is defined by

Rf = ( (X,Y) 1 any=N=xnfY).

We assume that there is such an expansive function f which yields the

arc-wise connected sets as all of its Rf-connected sets. We let I be a

line segment in the plane, and

choose q not on the line

determined by I. We split I

into dense, complementary

subsets of I: I = B U C,

where B n c = N, and B and

C are dense in I. Define

131



Al = Uq
E B

qx, where qx is the closed line segment joining q and x.

Then A
1

is arc-wise connected, since any two of its points may be connected

by a polygonal path through q. Thus A
1

is Rf-connected. If we choose a

point p E C, then (pj U Ai is not arc-wise connected. Thus (pj U Al

is not Rf-connected, and (pj and Al are separated. Then p fAl. Since

p is arbitrary, CnfAl = N. But AlQB, since each xEB is the end-

point of the segment qx. Hence fAl fB. It follows that C n fB = N. But

in the same way, we may show that fC n B = N. It follows that B and C

are a separated pair of sets, the union of which is I, a line segment. This

is the contradiction, since I is arc-wise connected, hence Rf-connected.

Remark. This example shows that arc-wise connected sets in E
2

cannot be

exactly the connected sets for any neighborhood space. Yet, if in the Lemma

used to prove Theorem A, C.
0

is the class of all arcs in E2, then the

minimum class c-(R) of connected sets containing C.
0

is the class of arc-

wise connected sets. This shows that connectedness should not be restricted

by the topological definition even for the purposes of topology!

REFERENCES

P. C. Hammer, General topology, symmetry, and convexity. Transactions of

the Wisconsin Lademz of Sciences, Arts & Letters,.. 44(1956)

221-255.

, Extended topology: The Wallace functions of a separation.

Nieuw Archief voor Wiskunde (3) 9(1961) 74-86.

, Extended topology: Connected sets and Wallace sepatations.

Portugaliae Mathematica. 22(1963) 167-187.

132



THE NATURE AND IMPORTANCE OF ELEMENTARY GEOMETRY
IN A MODERN EDUCATION

Lectures by Paul J. Kelly

Lecture I (Synopsis).

It is my belief that we have so far failed, and failed badly, to exploit

the educational potential of geometry in the basic high school course. We haye

failed our awn self interest in the training of future mathematicians and we

have failed to transmit to our children the general cultural values inherent in

geometry. The early work of national study groups was strikingly successful in

improving the vocabulary and the axiom systems used in the teaching of elemen-

tary geometry. But following this major achievement, most of the proposals

and sample materials have been timid and unimaginative.

Among the many causes for our failures, two seem to me to be primary. The

first is our failure to look at the subject of Euclidean geometry as a whole

and to see it as a well identified, viable mathematical structure with modern

developments of its awn and with interconnections to other parts of modern

mathematics. This failure causes all discussions of the high school course to

begin from a restricted viewpoint. Instead of starting with a consideration of

what is valuable and accessible in the subject matter, discussions start with

praise or damnation of the traditional course. Either contention is almost in-

variably supported by arguments that emanate from a bias and reveal stereotyped

thinking in which there is no reexamination of old attitudes.

The second major source of our failures is our inability to see the peda-

gogical possibilities implicit in the history of geometry in relation to the

history of mathematics. The idea of a mathematical system goes back to Euclid,
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and man's understanding of the independent che;70cter of such systems originated

with the discovery of non-Euclidean geometries. The work of Eudoxus certainly

motivated the search for a satisfactory theory of real numbers. Th.; problem of

finding tangents to a curve was obviously one of the origins of calculus. The

path from locus problems to analysis situs to topology is a clear one. The in-

fluence of geometric notions in the development of the Erlanger progrrm is well

known.

The lesson of history is plain. Geometry has time and again been the

source of ideas from which entire mathematical di,ciplines have grown. This

has been so because of man's visual mindedness and his propensity to firit come

upon important ideas in a graphic and intuitive setting. It is surely then a

a rather natural idea to see in this seminal character of geometry a marvelous

educational opportunity. Why do not we use geometry to introduce students at

an early age to a wide range of vital ideas and important processes? This is

the role that elementary Euclidean geometry can play incomparably better than

any other subject. It is here that the defense of geometry becomes rational

and powerful, needing no sentimental appeal to tradition, and justifying its

existence by the standards of contemporary values.

Working with Norman Ladd, I have written a high school geometry textbook

in the spirit just described. I am firmly convinced that the attitude toward

geometry in this book, the pedagogical objectives, and the new content intro-

duced represent natural directions for significant improvement in high school

geometry and high school mathematics. I cannot judge, of course, how well

the intentions of the book were actually implemented. In any case, it is what

we intended to do that I believe merits serious consideration, whether or not

we achieved those intentions. In sketching this program, I ask you to boar in
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mind that I am talking about a tenth grade course and that our concern was with

the education of all young people and not just with the prospective mathematics

major.

The unifying theme of the book is that Euclidean geometry is not only a

mathematical system but a wonderful prototype of a scientific system. From

this viewpoint, its importance to society is obvious. Whereas one may speak

about the applications of algebra or functions, geometry is literally the ma-

trix in which such subjects as classical physics, engineering, and architecture

are inescapably imbedded.

The systems concept initiates the book's intention to use geometry as an

introduction to ideas and processes of major importance. The construction of

intellectual models to study various aspects of physical reality is fundamental

in modern science and technology. In illustrating this, geometry has several

advantages. One is the fund of knowledge about physical geometry that the stu-

dent has already acquired. He knaws a great deal that the model must succeed

in representing. Moreover, in checking that the model is successful, in most

cases he only needs to make reasonably accurate diagrams. He does not need a

laboratory.

Stressing the natural relation of Euclidean geometry to physical geometry

may be repugnant to certain purists. But the relation of the two subjects in

no way contradicts the independence of the mathematical system nor denies the

logical criteriol it must satisfy. On the other hand, the relation of the two

subjects explains the motivation for the way in which the mathematical system

is constructed. Also, it keeps the mathematics in a context useful to the

student who is not mathematically oriented. Finally, I venture to suggest that

those relations most interesting in physical geometry usually correspond to the

more interesting parts of the mathematics.

135



One natural consequence of the "model" point of view is that the book

deals with Euclidean space from the outset for the-obvious reason that physical

space is not a plane. There is, of course, a natural sequence in the develop-

ment of linear and planar relations, but the lines and planes are always in

space and not the space itself.

In the initial stages of building the system, no attempt is made to "do"

foundations. What is stressed is the building process itself, and the need for

axioms, definitions, conventions, and notations. Aside from a few sample proofs,

nearly all the foundation relations are stated as starred, unproved theorems.

Thus they are axioms that the student knows can be proved, and this treatment

allows one to proceed quickly. In particular, the system appears as a man-

made structure, in which there are many arbitrary choices, and is not seen as

something fixed and God-given.

With the foundations established there is a traditional development of

plane and solid geometry following the themes of congruence, parallelism, and

similarity. The student is involved in reading and writing proofs and solving

problems. Many different points of logic are discussed as they appear in con-

text.

At the half way point of the book, the principal structural relations of

Euclidean three space have been established together with a faily extensive

mathematical vocabulary. The student has taken part in the building process

and has leaxned a good deal about proof writing in connection with the

properties of elementary figures such as polygons and circles. Howevet, all of

this is clearly only a beginning.

If the system that hcs been built is to be taken at all seriously as an in-

strument for investigating physical geometry, then it obviously has to contain
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more mathematical objects than circles and polygons. A natural extension of

planar objects is found in the class of plane convex figures. In finding these,

the student sees the creative side of definition. A physical figure cut out

from a flat piece of cardboard corresponds to a mathematical set that is planar,

non-linear, and bounded (contained in the interior of some circle). Restrict-

ing the physical "cut-out," we can use convexity to express the "oneness" or

cunnectedness of the corresponding mathematical set. Finally, as a physical

figure the cut-out must contain its edge points or boundary points. The mathe-

matical characteristic of such a boundary point P is its nearness to both the

set S and the complement of S. Thus we can define P to be a boundary point

to the planar set S if the interior of every circle at P intersects both S

and the complement of S. Thus we finally arrive at the class of plane, con-

vex figures, the sets that are planar and non-linear, bounded and convex, and

that contain their boundary points. The boundaries of these figures now give

us the extensive, and accurately defined, class of simple, closed convex curves.

Starting from a wholly natural objective, and using a few ideas of a top-

ological character, a whole new vista has been opened to the student. Moreover,

he has seen this result from a change of viewpoint. In the early work, polygons

and circles were defined and then their interiors were discovered, so to speak.

Now it is regions that are defined and their boundaries that are discovered.

From this new point of view, all the former figures are simply special types of

closed, convex curves. The former interiors now become the set of inner points

to the plane convex figure.

In the rich variety of ideas in the theory of convex figures--diameters,

lines of support, widths and curves of constant width, etc.--the student sees

the spirit of mathematical generalization at work. Moreover, the natural
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extension of these concepts to space provides a beautiful example of analogy

and the efficiency of good definitions. With the sphere replacing the circle,

one finds at once how to define convex solids and obtains from their boundaries

the extensive, and accurately defined, class of simple, closed, convex surfaces.

In particular, the traditional surfaces of solid geometry, spheres, cones,

cylinders, and polyhedra, now appear in a natural setting as particular convex

surfaces.

After establishing a more realistic class of geometric objects, the next

step is again a natural one. In the earlier study of elementary figures, the

two principal notions employed were congruence and similarity. Our mass pro-

duction society, if nothing else, shaws that both the concepts of congruence

and similarity are applicable to quite arbitrary objects. It is natural then

to seek a mathematical generalization of these concepts that can be applied to

our new class of curves and surfaces.

Starting with congruence, a clue to the desired generalization can be

found in the physical motion of an object from one position to another. Each

point of the object in the initial position has a natural association with its

corresponding location within the object at the second position. We can express

such associations by mathematical mappings. Once mappings, and the combining of

mappings have been defined, one sees that the mappings that will generalize con-

gruence are those that preserve distance, the isometries. Any set is, by defi-

nition, congruent to its image in an isometry. One easily establishes that

reflections in points, lines and planes, rotations and translations are iso-

metries.

The similarity mappings that change all distances by the same positive

factor provide the desired generalization of similarity, since any set may be
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defined to be similar to its image in a similitude. It suffices to establish

the dilations at a point as similitudes since one sees that the product of a

motion and a similitude is a similitude.

In this mathematically simple theory, the student again sees the rich

harvest of generalization. Not only do the mappings provide a natuLal way for

expressing symmetries of general objects, they provide powerful tools for

solving problems. Moreover, it is not difficult for him to see that all kinds

of mappings are possible ond that all sorts of invariants could be studied.

He has, in fact, seen one of the tap roots of modern mathematics.

The final parts of the book deal with area, volume, and circular arc

properties. Here there is the chance to show how the new concepts and methods

may be used in the development of traditional theory.

The program just sketched is practical in being evolutionary rather than

revolutionary. Though the spirit of the book, the variety of objectives, and

some of the content, are not traditional, these changes are imbedded in a

familiar framework. Much of the material is traditional and the book is deeply

indebted to the early work of SMSG and other study groups.

What seems to me of paramount importance is that the kind of course I

have sketched introduces ideas and processes of vital importance in contempo-

rary mathematics. It does so in a completely natural way and the course is

primarily--and properly so at the tenth grade--a revelation to the student of a

whole series of mathematical vistas. It is an introduction to mathematical

and scientific systems, to mathematical proof and disproof, to the processes

of analogy and generalization, and to the creative aspect of making definitions.

It initiates topological ideas, notions related to functions and groups, and

introduces the deeply fruitful concept of a transformation and the invariants
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of a transformation. It provides a setting within which many unsolved prob-

lems can be stated and new ones even conjectured by exceptionally good students.

It pictures mathematics as a man-made subject and one which is dynamic and con-

stantly expanding.

Not only is such a course a natural evolution at this time, it provides

for future evolution in directions that are clearly desirable. When teachers

have acquired familiarity with simple topological notions and transformations,

a future shift of emphasis can give such concepts a more central role and a

more extensive development than is practical at this time.
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Lecture II (Excerpts) Notes by Paul Yale.

[In his second lecture Kelly presented many examples illustrating what

tenth graders can do with the new material he believes should be included in a

high school geometry course. The following excerpts give the flavor of the

talk.]

The following example illultrates the use of reflections in a simple con-

struction problem, the problem of constructing a tangent to the circle C(A,x)

from the point P. The construction is: 1. Construct the perpendicular to

the line PA through B, the point of intersection of C(A,x) and the seg-

ment PA. 2. Let C be one of the intersections of this perpendicular with

the circle centered at A and through P. 3. Let E be the intersection of

C(A,x) with the segment AC. The

proof that the desired tangent is the

line PE is obtained by reflecting

the line BC in the angle bisector

of angle PAC. This reflection

leaves C(A,x) invariant and inter-

nhanges P and C as well as B

and E. Since tangency is invariant

under reflections and BC is a tan-

gent to C(A,x) through C, the line EP is a tangent to C(A,x) through

P. A nice feature of this construction is that it is also valid for construct-

ing tangents to circles in hyperbolic geometry where you do not have the

property that the angle inscribed in a semicircle is right angle.

The point to the next example is the fact that the solution to an old,

familiar problem often jumps out at the student when he is familiar with map-
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ping techniques. The problem is to construct the circles through an interior

point P of an angle and tangent to both sides of the angle. If C is any

circle tangent to both sides of the angle, then clearly a dilation at the angle

vertex Q can move C to a position where it contains P. If the two points

of intersection of circle C and the line QP are R and S, then the

two dilations with center Q sending R to P and S to P map the circle

C to the two desired circles, since tangency is invariant under similitudes.

Mbreover, we see that these two circles are the only possibilities, so we have

a complete solution.

The following problem illustrates nicely the economy of mapping techniques.

Consider a parallelepiped with A and B two opposite vertices and let M be

the midpoint of A and B. Let C be a vertex adjacent to B and let D be

the vertex opposite C. The reflection in M sends rays to oppositely directed

rays and preserves distances, so it must send C to D. But it is an inter-

change mapping hence it also sends D back to C. The midpoint of two inter-

changed points must be the center of reflection, hence the diagonal DC also

contains M. The same argument is applicable to the other diagonals, so all

four diagonals meet at M; moreover, we have the added information that M is

the center of the parallelepiped and that the solid angles at opposite vertices

are congruent.

Consider naw the problem of constructing an equilateral triangle with its
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three vertices on each of three given parallel lines, r, s, and t. Since the

translates along r of any one solution are also solutions, we can pick the

first vertex P on r arbitrarily. Let s' be the image of the line

under a rotation through 600 centered at P. Since s' and t are not

parallel we can let Q be their intersection and let ri be the image of Q

when we rotate back 600. Since s' must come back to s, Q is on s, and

IMO*

the triangle PQQ is easily shown to be the desired triangle. The simplicity

of this construction is, I thidk, a nice example of elegance in geometry.

The classical problem of the nine point circle and the Euler line illus-

trates how mappings not only establish the basic result with economy, but often

give extra information. Given a triangle PQR, consider the three feet, F.,

of the altitudes, the three midpoints, M , of the sides, and the three mid-

points, Ri, of the segments joining the orthocenter 0 to the three vertices.
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TheninepointsdR.can easily be shawn to be on a circle, called
3.

the nine point circle. Let N be the center of this circle. We want to ex-

plore the relations between N, 0, the circumcenter C, and the centroid G.

First we dilate with ratio 2 from the point 0. This sends the three points

R. to the vertices and hence sends the nine point circle to the circumcircle.

Thus it must send N to C and we see that 0, N, and C are collinear

with N the midpoint of 0 and C. Next we consider the reflection in G

follawed by a dilation with ratio 2 and center G. This product of mappings

sends M
1;
M
221

M
3

via M',14',141 to the three vertices and hence sends the nine
1 2 3

point circle to the circumcircle. Thus the same product of mappings sends N

to C and shaws that G, N and C are collinear. But with no extra

effort we also see that G is one third of the way from N to C since the

reflection in G sends N to the midpoint of G and C. Combining this

information with that above, we see that the four points are in the order

G N 0

on the Euler line, and that if any two coincide they all do.

I think the following example illustrates nicely the way one can exploit

a simple problem to get a more complicated result and that it illustrates

techniques that we will see more of in the future. If A and B are on the

same side of the line t, then we obtain the minimal path from A to B via

t in the usual way by taking X to be the intersection of the line t and

the line A'B, where A' is the reflection of A in the line t. This is

a strict minimum, so if we let C be the ellipse through X, with foci at

A and B, then X is the only point on both t and C, and therefore t

is tangent to the ellipse. Because X is fixed under reflection in t, while

A maps to A', the tangent t is the bisector of angle AXA'. Thus we obtain
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the standard focal property of an ellipse with a nice economy.

There are many examples illustrating how this new kind of material can

be used as an exploratory tool. I have chosen just one, which shows how the

student can discover something thc: is not intuitively obvious. Let A, B,

C, and D be the four vertices of a regular tetrahedron. What are the axes

of symmetry? Assume there is one. Since a reflection is an interchange map-

ping we see that a reflection cannot leave the tetrahedron invariant and have

either one or three fixed points among the four vertices. It cannot leave all

four vertices fixed and, since an edge is obviously not an axis of symmetry,

neither can it leave two vertices fixed. Thus the four vertices are inter-

changed in pairs, say A .0. B and C D. The midpoint of two points inter-

changed by a reflection is on the axis of reflection, so we see that the only

candidates for axes of symmetry are the three lines joining midpoints of

opposite edges. One easily shows these are axes of symmetry. Since it

interchanges A and B and also C and D, the reflection in line DIN

must interchange R(the midpoint of BC) and S(the midpoint of AD). There-

fore, the line RS is perpendicular to MN. Applying the same argument to

T
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the third axis, we see that

the three axes of symmetry

are mutually perpendicular,

a result that was not

intuitively evident when we

began our exploration.

The following example illustrates a typical kind of convexity problem

that students can do. Given two parallel lines of support, x and y, for

a convex curve, each of the lines

A must contain a contact point, say

A and B as shown. Obviously,

d(A,B) d(x,y). Since there is

always a chord as long as any width,

the diameter is at least as large

as the maximum width. On the other

hand, given A and B in the con-

vex curve, there are parallel lines of support perpendicular to AB. These lines

cannot be between A and B0

hence the width is at least

d(A,B). Therefore, the maximum

width is at least as large

as the diameter. From the

two inequalities it follows

that the diameter equals its

maximum width. By following

a similar line of reasoning, the students can show easily that the contact
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points for parallel support lines of maximum width are unique and that the line

joining them is perpendicular to the support lines. Two immediate consequences

are that curves of constant width contain no segments and that circles are the

only curves of constant width with a center. These ideas generalize of course

to convex solids in space. Also, by first proving that if I is between A

and B, then

d(X,I) max(d(X,L) d(X,B))

for any point X in space, it is easily shown that the maximum width of a con-

vex polygon or a polyhedron is the distance between some two vertices.

The new material in this course provides a rich supply of exploratory

problems. The following are a few examples of problems that can be settled by

a counter example. 1. A closed convex curve containing a segment has a corner.

2. Two closed convex curves cannot cross each other more than four times.

3. A linear set with infinitely many centers is a line. 4. The altitudes

of a tetrahedron are concurrent. 5. An isometry without fixed points is a

translation. 6. If for all X E R the distance from X to the set S is

constant, then for all Y E S the distance from Y to R is constant.

Finally, let me repeat one of my major points. Although I believe that

convex figures should be included in the high school curriculum and hope that

future recommendations will encourage this, I am even more concerned that trans-

formations be included. The structure of the motion group of a geometric space

is essential information about the space. Transformations are easy to teach

and vital to ideas that are alive today. If mathematicians said flatly that

motions and similitudes are an integral part of Euclidean geometry and must be

taught at the high school level, then the high school teachers would learn them.

They can do so easily. I hope we will insist that they must do so.
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JOINING AND EXTENDING AS GEOMETRIC OPERATIONS
A coordinate-free approach to n-space

Lecture by Walter Prenowitz

(Lecture notes by Melvin Hausner)

There is a widespread belief among mathematicians that the only effective

way to study n-dimensional geometry is to assume the existence of a coordinate

system and use coordinate methods from the start. This is very easy to under-

stand historically. In the early development of n-dimensional geometry mathe-

maticians studied the subject by means of analytic models and naturally used

whatever procedures were at hand, algebraic and analytic, to get results.

Since, in addition, the synthetic methods of classical 2- and 3-dimensional

geometry do not generalize in a simple or obvious way, the belief is rarely

challenged and mathematicians are not encouraged to try to discover intrinsic,

coordinate-free methods for studying n-space.

This situation has two consequences that I think are harmful. 'First it

fosters the belief that n-dimensional geometry can't be studied efficiently on

an autonomous basis but can only make progress with the extrinsic support of

algebra. Second it tends to inhibit studies that cover broadly many geometric

systems, since the initial choice of coordinate representation restricts the

geometry studied to one particular type, usually affine or Euclidean geometry.

I want to argue that the conventional view is not necessarily correct and

show specifically that much of linear geometry can be treated by coordinate-

free methods.

I take as my starting point the operation of joining two points to form

a segment. In classical geometry we often come across the phrase "join point

a to point b to form a segment." But it is the segment ab which is
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studied, not the joining operation. The emphasis falls on the noun "segment"

rather than the verb "to join." We shall systematically study join as an

operation on pairs of points which is extendible to n points.

In what follows, we shall use lower case letters a,b,... to denote

points, and upper case letters A,B,... to denote sets of points. For con-

venience, we shall often ignore the distinction between a point a and its

singleton set (a). For example, we shall write a c: A when no confusion can

occur.

Before proceeding to the formal development, we describe informally the

significance of the theory in Euclidean geometry. To every ordered pair (a,b)

is associated the open segment ab whose endpoints are a and b. We call

ab the join of a and b and denote it a.b or simply ab. Implicitly,

a b in this case. However, we certainly want the operation to be defined

for all choices of a and b. Therefore, if a = b, we define ab = aa = a.

Figure 1 (a)
Figure 1 (b)

How would we form the join of three points a, b, c? It is natural to

form bc, then join a to the individual points of bc and take the union of
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the joins formed to obtain the join of a, b, and c. In Figure 1(a), we can

see that this operation produces the interior of the triangle abc. It is

reasonable to use the notation a(bc) to denote the set of points which we

obtain in this way. We can just as well form ab, then join the individual

points of ab to c and take the union of the joins formed. The result,

which may be denoted (ab)c, also is the interior of triangle abc (Figure

1(b)). Thus we may wftte a(bc) = (ab)c = abc.

We can easily extend the operation to four points. Suppose a, b, c, d

are in general position.
a

We form bcd which is the

interior of triangle bcd,

then join a to each point

pf bcd and take the union

of the joins formed. The

result may be denoted

a(bcd) and turns out to

be the interior of tetra-

hedron abcd (Figure 2).
Figure 2

We might also wish to form (ab) (cd) the join of ab and cd. We

therefore give the natural definition for the join of two sets:

AB = U (ab).
a c A
b c B

Thus AB is the union of all possible joins of points in A with points in

B (Figure 3). It follows that xc AB if and only if xc ab where

a c:A and bc: B. The definition covers the previously introduced idea

of a join aB, such as a(bcd), since we have agreed to identify an element
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Figure 3

with its singleton set. Also

the notation AB for join of

sets is consistent with the nota-

tion ab for join of points

when A, B are the singleton

sets (a), (b).

Using this definition of join, we can convince ourselves that (ab)(cd)

is the interior of the tetrahedron abcd, when a, b, c, d are in general

position, so that (ab) (cd) = a(bcd).

While the join operation is, I think, the most important operation in

elementary geometry, it is not the only important one. Next in importance

is that of prolonging a segment indefinitely to form a ray. Instead of

regarding this as an operation on a segment, we shall regard it as an operation

on the ordered pair of endpoints of the segment. The prolongation of segment

ab beyond a will be denoted a/b (.see Figure 4). ab may he read "the

4.

a

Figure 4

extension of a from b" or simply "a over b." In terms of the join

operation, the foxmal definition of a/b is simply

a/b = [xl a cxb).

We observe that a/b, when a b, is an open ray that does not contain

its endpoint a. For ac a/b implies a c: ab, which is impossible since

ab is an 22.en. segment. Note also that the definition is applicable when

a = b so that a/a has been formally defined. By the definition xc a/a

if and only if a c xa. The latter holds if x = a (since aa = a by

definition) and only if x = a (since x a implies xa is an open
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segment). Thus a/a = a.

It is desirable to extend the operation to sets. We define A/B

(called the extension of A from B) by the formula

A/B = Lj (a/b).

a c: A

b a B

Figure 5

NUM NNW

ONO 111

Note as above x (= A/B if and only if x (= a/b where ac: A, bc: B. Also

the notation A/B is consistent with the notation a/b if A = (a) and

B = (b). An important

illustration of A/B occurs

if A is simply a point a.

Then A/B is a cone with

vertex a whose elements

are the rays a/b for all

bc: B (see Figure 6).

We can test the usefulness of

this notation by applying

it to familiar figures and

basic properties in elementary

geometry.

A = a /r%/ \/ I \
/ I \

Figure 6
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We note that line ab is partitioned into the sets a, b, ab, a/b,

and b/a. (See Figure 7.)

a/b a ab b/a

Figure 7

In order to generalize this result to plane abc we consider the

expressions (ab)/c and a/(bc) written simply as ab/c and a/bc. By

applying the definition of A/B above, we see that ab/c and a/bc repre-

sent regions of the plane abc as indicated in Figure 8.

Figure 8

By using results of this type we obtain a partition of plane abc into

7 regions, 6 rays, 3 segments and 3 points which are expressed as products and

certain quotients of products of a, b, and c, as indicated in Figure 9.

Entirely analogous results hold in n-dimensional geometry (see [3], Section

11).
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Figure 9

We can further express geometric identities with the help of this

notation. For example Figure 10 illustrates a/bc = (a/b)/c. On the other

bc

Figure 10
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hand, it must not be assumed that all of the formal identities of school

algebra are valid in this system. For example, we can only say

a(b/c) c ab/c, as indicated in Figure 11.

a

Figure 11

These considerations suggest a treatment of geometry as an abstract

system (called a loin, system) based on a join operation. We therefore

study a system (3, .), consisting of a set G and a binary operation

which maps ordered pairs of elements of G onto subsets of G. As above,

lower case letters will denote elements of G (called points) and capital

letters subsets of G. We assume the following axioms.

Jl: If a and b are elements of G, ab is a uniquely determined,

nonempty subset of G.

32: For any a, b in G, ab = be.

In order to state the associative law, it is necessary to extend the

definition of multiplication.

Definition. If A c G, and Bc G, we define
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AB = ab.

a c A
b B

In view of our conventions concerning the identification of points with

their singleton sets, this definition is easily shown to be consistent with

the binary operation defined on points, that is ab = (a)(b). Similarly

we can regard the join aB as defined (aB = (a)B). Note that x is in

AB if and only if x is in ab for some a in A and some b in B.

J3: For any a, b, c in G, (ab)c = a(bc).

It is natural to define an operation which is the inverse of join.

Because the join of a and b is a set, care must be taken in framing the

definition. For example, we should not expect a/b to be an element x such

that bx = a.

Definition. For any a, b in G, a/b = (x 1 xbD a).

Again, we can extend the definition to sets A and B.

Definition. If A and B are subsets of G,

A/B = U (a/b).

a c A
b c B

It is easy to see that x c A/B if and only if x c a/b for some

a c A and some b B.

34: For any a, b in G, a/b is non-empty.

The next axiom is suggested by a triangle postulate employed by Peano.

It says in effect that if, in triangle bdf, a is chosen on side bf and

c is chosen on side df, then the segments ad and bc intersect.

(See Figure 12.) Note the hypothesis of this triangle postulate can be

157



Figure 12

restated to assert that rays a/b and c/d meet.

J5: If a/b n c/d 0, then ad n bc 0.

This statement of axiom J5 is correct, but we must observe that it is

very inelegant. The simple relation that two sets meet is expressed in

notation which obtrudes the operation of set intersection. Therefore, I

should like to introduce a new notation. I do so with some hesitation, since

I don't believe that new notations should be introduced lightly. However,

the notion that two sets meet or intersect seems so important in geometry and

in other subjects that it seems warranted. We shall therefore write A Re, B

to mean A n B 0. As a consequence we may now restate 35 in a neater form.

35: If a/b s.,,c/d, then ad sr,' bc.

We also note that the condition for x c a/b can be simply phrased in

this notation. Thus x Re. a/b if and only if xb a. Similarly x A/B

if and only if xB Re, A.

The final postulate asserts our idempoent laws.

36: aa = a/a = a.

As we indicated in our preliminary diocussion, Euclidean geometry or
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affine geometry of any dimension (finite or infinite) is a model for this axiom

system. We take G as the set of points of the geometry, and the join ab

is defined as the open segmenc joining a to b if a b, while the join

aa is simply defined to be a. Wc can form a model from any vector space

over the reals or over an ordered field. Here, we choose G as the set of

elements of the vector space and we define the join ab as the set of non-

trivial convex combinations of a and b. Thus

ab = (x x = Xa + pb, where X + = 1 and 0 < X, 1.0.

However, we note that the system of axioms is weak enough to cover many other

systems.

Note in these examples that the axioms hold for all degenerate cases. For

example, the associative law holds when a, b, and c are collinear. Indeed

a, b, and c can be arbitrary. This is quite an advantage over conventional

formulations of geometry in which so many statements must be qualified to

exclude degenerate cases.

Now, what can be done with this system? We can, in the usual way: extend

the operation to n points inductively. The generalized associative and

commutative law is valid for n points and for n sets of points. In the

Euclidean model, the join, al...a
n

, of n points is the interior of the

simplex determined by the points, provided the points are in general position

(Figure 13 (a), (b), (c)). In all cases al...an is the interior of tbe

convex polyhedron "generated" by a1,...,an. For example, if al, a2, a3, a4

are coplanar, no three of them are collinear and none of the points is in the

join of the other three, then a1a2a3a4 is the interior of the convex quadri-

lateral whose vertices are a
l'

a
22

a
3'

34 (Figure 13 (d)).
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1
a
2
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(b)

ala2a3a4
ala2a3a4

(c)

Figure 13

(d)

We now state some theorems which are derivable from the axioms.

Theorem. a/bc = (a/b)/c.

Theorem. (a/b)c c ac/b.

Theorem. (a/b)(c/d) c: ac/bd.

Theorem. (a/b)/(c/d) c: ad/bc.

All of these theorems can be extended to sets. Thus A/BC = (A/B)/C,

(A/B)Cc:AC/B, etc.

In this system, what are the distinguished types of sets? Since the basic

operation is join, convex sets come to the fore.

Definition. The set A is called convex if it is closed under join,

that is, if x, yc A implies xy c A.

Theorem. A is convex if and only if (1) A AA or (2) A = AA.

Theorem. If A and B are convex, then A n B, AB and A/B are

convex.

Definition. The convex closure or convex hull) of any set S is the

least convex set, [S], containing S. Thus [S] is the intersection of
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all convex sets containing S.

ES] may be characterized as follows: x c ES] if and only if there are

finitely many points of S such that xc si...sk.

It is also reasonable to consider sets which are closed under the join

operation and its "inverse." This leads to the notion of linear sets (or flats).

Definition. The set A is called linear if it is closed under the opera-

tions of join and extension, that is, if x, y c A implies xy c A and

x/yc A.

It might be considered preferable to define linear set in a more conven-

tional way: A is linear if x,y C A y) implies line xy c: A. This is

not wrong--but how is line xy to be defined? The familiar definition in

Euclidean geometry (see Figure 7 above)

line xy = xuyuxylix/YUY/x

is not suitable in our theory since the indicated set union is not necessarily

closed under join and extension. (See the first model presented in the Discus-

sion below.)

Theorem. If A and B are linear and AR,- B, then A/B is linear.

Theorem. If A is convex, then A/A is linear.

We may define the linear closure (5) of a set S in a way similar to

the definition of the convex closure.

Definition. The linear closure of a set S is the least linear set (S)

which contains S.

We can characterize the linear closure of finite sets very nicely by means

of the follawing theorem.

Theorem. If S = tal,...,ard is a finite set, then

(S) =
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This theorem suggests a definition and formula for line in our theory.

For certainly in Euclidean geometry line ab is the least linear set which

contains a and b.

Definition. If a b, ab/ab is a line.

As we suggested above, this need not equal aUbUablja/bUb/a. (See

the first model in the Discussion below.)

We conclude by remarkin6 that the notion of the interior of a convex set

can be defined and studied in the theory.

Definition. Let K be convex. Then 1(K), the interior of K, is

defined by

I(K) = (p I x (= K implies p/xf.,,

Theorem. Let K be convex. Then x (= K implies

I(K) c: xK (.7 K.

Theorem. If K is convex, K.I(K) = 1(K).

Corollary I. If K is convex, 1(K) is convex.

Corollary 2. Let K be convex, x (= I(K). Then Kx = I(K).

Theorem. Let K be convex. Then I(I(K)) = I(K).

Definition. The convex set K is 2.22a if K = 1(K).

Theorem. If K
1

and K
2

are open convex sets, then K
1
n K

2'
K
1
K
2

and K
1
/K
2

are open convex sets.

It is worth noting that the proofs involve essentially straightforward

applications of the axioms. They do not require study of degenerate cases,

since the axioms were set up in such a way as to include all cases.
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Discussion.

In answer to a question Prenowitz gave the following model in which a line

is not always expressible in the form aUbUabUa/bUb/a. If (131, ) and

(3
2' ) are join systems we can form their "direct product" (3, ), which

also is a join system, as follows. Let G = Gi X G2, the Cartesian product

of G
1

and G
2.

We define join in G thus:

(a1,a2) (bi,b2) = (a1b1) X (a2b2).

Let (31, ) and (G2, .) be the real line considered as a (Euclidean) join

system. Then (3, .) is the Cartesian plane with ab interpreted as

follows: (1) If a and b are on a vertical line or on a horizontal line

ab is the join of a and b in the usual sense in a Euclidean geometry;

(2) in the contrary case, ab is the interior of the rectangle with hori-

zontal and vertical sides which has a and b as a pair of opposite vertices.

A

b/a

>1.

a/b

ab

a

Figure 14
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Figure 14 indicates that aUbUabUa/bUb/a is notalinear set,

indeed it is not even convex, and certainly is not a suitable definition for

line in the theory.

Figure 15

The model also is a counterexample for the statement that two distinct

points determine a line. In Figure 15 ((a,b3) = ab/ab, which by definition

is a line, turns out to be the whole Cartesian plane. But ((c,d3) = cd/cd

is just the vertical line cd, Thus the distinct points c and d are con-

tained in two distinct lines, namely, ((a,b3) and ((c,d3).

We can also generalize the vector space model referred to earlier by

replacing the field of reals by any partially ordered field. A partially

ordered field is a field that has a distinguished subset P (whose elements

are called positive) which is closed under addition, multiplication and the

operation of taking reciprocals. Any vector space over a partially ordered

field F becomes a join system when join is defined exactly as for a vector

space over the reals. If F is not an ordered field, the resulting join

system has the interesting property that its lines are not fully ordered
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sets of points. That is, any line contains three distinct points, none of

which is in the join of the other two. A related property is that Pasch's

Postulate fails in the given type of join system.

In response to a question, Prenowitz observed that Helly's Theorem fails

in such "partially ordered" join systems. Helly's Theorem seems to be equiva-

lent to the condition that the points of any line form a fully ordered set.

Another class of models noted by Prenowitz may be described as subsystem

models. If G is any join system and K an open convex set in G, we

obtain another model by relativizing G with respect to K (see [1] pp. 60-61).

GrUnbaum asked if it was possible to add axioms systematically to get to

Euclidean space. Prenowitz answered affirmatively. For example, the theory of

incidence and dimension can be obtained by postulating a weak form of the

principle that two points determine a line, which is related to the Steinitz

exchange principle (see [1] p. 39).

If in addition we postulate that the points of a line form a fully

ordered set (see [1] pp. 44-45), the familiar theory of separation of linear

sets can be derived. In particular the theorem on the separation of a linear

set by a linear set can be given a dimension-free treatment in the form: If

A and B are linear and A covers B (that is, B is a maximal proper

linear subset of A) then B separates A.

In reply to a question, Prenowitz said that the separation theorems for

convex sets would probably go through in any join system for the finite-

dimensional case. But the infinite-dimensional case seemed more difficult,

unless some restrictions were assumed.
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REPORT ON CURRICULUM DISCUSSION

Walter Prenowitz

Curricular questions arose constantly throughout the period of the Confer-

ence--they were sometimes explicitly introduced by the lecturer but often

appeared spontaneously in the discussion following the lecture. The questions

were not always Eollowed through, since the conference ran for only three weeks

and much material. was presented that was new and stimulating both in mathemati-

cal and curricular terms. Moreover, new approaclies to curriculum and teaching

often need to be mulled over or given a resting period before they crystallize.

The Proceedings contain much interesting and stimulating material on curricular

and pedagogical questions, from which I am making a selection of points which

seem most important and salient.

When the conference began, no specific periods had been scheduled for the

formal discussion of curriculum. Klee, who felt it was important to initiate

such discussion, decided to devote the first lecture in his series on Applica-

tions of Geometry (Part I, pp. 7-12) to consideration of collegiate geometry

courses, their desirable characteristics, and to the geometry of convex bodies

as possible subject matter for such a course. Klee's lecture evoked much

response and his suggested criteria were brought up several times during the

conference as a basis for discussion of geometry courses.

Part II, Geometry in Other Subjects, contains the lectures of Steenrod

on the geometric content of the freshman and sophomore mathematics courses and

those of Gleason set at a somewhat higher level. There is much interesting

material here, not readily accessible elsewhere, in which these eminent

geometric-minded mathematicians gtve their views on how certain important

portions of the undergraduate curriculum should be conceived, organized
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mathematically, and taught. It presents a perspective which ordinarily would

be open to their students alone.

Several times in the course of the discussion, dissatisfaction was ex-

pressed with the treatment of linear algebra. There was a feeling that linear

algebra courses too often tend to put excessive emphasis on computation within

coordinate systems (matrices, determinants, etc,) at some expense to conceptual

understanding. The view was expressed that conventional linear algebra courses

treat geometry in an off-hand fashion and do not seem to give students an

understanding of the geometric basis for the vector concept--specifically that

students tJnd to become confused on the distinction between affine geometry

(non-ce.Lered) and vector space theory (centered). It was suggested that some

time be taken at the beginning of a linear algebra course for discussion of

affine geometry, so that the student gets an appreciation of the affine con-

cepts before he is introduced to the powerful vector theoretic ideas which

may swallow them up. I wonder whether the ideas of affine geometry aren't

sufficiently basic and important to merit inclusion in some geometry course

that would be taken before the vector space concept is studied.

Several formal discussions on curriculum were held as the need for them

was expressed by participants. The following recommendations were discussed

and approved at these meetings.
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Recommendations of the Conference

I. That a pamphlet or booklet be written in the spirit of "Geometry in

Other Subjects" to be concerned with the geometric background, content and

motivation in the first year calculus course.

II. That the follawing principles be given appropriate weight as

general guidelines.

1. An upper level geometry course should, if possible, be oriented

toward n-dimensional space. The framework and methods, if not themselves n-

dimensional, should generalize to n-space.

2. The course should be unified by an important idea.

3. Geometry courses should make more use of intrinsic concepts and

methods, such as transformations, vectorial methods, metric space methods,

iterative processes such as join operations, incidence and lattice concepts.

4. Geometry courses should, so far as possible, treat topics

relevant in other branches of mathematics.

5. In every course sufficient emphasis should be given to geometry

as a way of viewing mathematics.

These principles are not intended to be exhaustive and may not be wholly

consistent with each other but hopefully should stimulate critical discussion.

They are intended to be a first word--not a lasts

III. That mathematics teachers be encouraged to experiment with junior-

senior level courses in the following subjects: Convex Sets, Geometry from

the Transformation Group Viewpoint, Hetrif: Linear Geometries.
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Sample Course Outlines

It cannot be emphasized too strongly that the following outlines and

descriptions for tae three courses are suggestions for experimentation--they

are not course syllabi approved either by the Conference or by CUPM for

general adoption.

Convex Sets

A. Fundamental Topics.

1. Preliminaries on Rn: Basic linear algebra and affine geometry, open

and closed sets, etc.

2. Basic properties of convex sets: Supporting hyperplanes, supporting

functions, distance functions, convex functions, convex hulls, bound-

ary structure, polytopes, duality.

3. Separation and support theorems, extreme and exposed points.

4. Helly's Theorem, Radon's Theorem, Caratheodory's Theorem.

5. Convergence of convex sets, approximation by polytopes.

6. Applications to other branches of mathematics including analysis.

7. Isoperimetric problems.

8. Discussion of unsolved problems.

B. Additional Topics.

9. Mixed volumes, symmetrization.

10. Polytopes.

11. Packing and covering.

12. Sets of constant width.

13. Variants and generalizations of Helly's Theorem, Radon's Theorem,

Caratheodory's Theorem.
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The topics listed are intended to give an indication of the potentialities

of the macerial and are not necessarily definitive. Some topics might be

shifted from one list to the other depending on the length of the course, the

level of the students and the teacher's interests. The treatment would be

framed, when the material became too difficult, in R
2 and R

3
but would

still point naturally toward Rn.

Geometry from the Transformation Group Viewpoint

The study of a branch of geometry as illumined by examination of its

underlying transformation group. A natural choice of geometry would be the

Euclidean plane and space, the isometries and similarities forming the trans-

formation groups. Topics studiPd would include transformations and their

classification; groups and subgroups of transformations; geometric invariants;

special attention would be given to discrete groups of transformations. Other

possible choices of subject to be studied from this viewpoint might be affine

geometry, projective geometry, inversive geometry or the classical non-

Euclidean geometries. The course could also develop--depending on the interests

of the teacher and limitations of time--som of the properties of transforma-

tions over a general field, particularly linear, affine and projective

transformations.

Metric Linear Geometries

This is an attempt to present the essence of the concept of projective

metrics by requiring only a minimal knowledge of projective geometry. The

basic systems studied might be "subgeometries" of affine rather than projective

geometry. The geometry is postulated to be a metric space which satisfies the
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following metric-incidence postulate: The strict triangle inequality holds

for any three distinct noncolltnear points.

Incidence geometries; affine and projective geometries. Metric spaces.
P

Metric betweenness, metric seg

Perpendicularity. Congruence

and hyperbolic geometries.

Reference: Busemann and

Chapter IV. There is much at

years ago and probably now can

ents, lines and great circles. Convexity.

and isometries. Minkowski, Euclidean, Hilbert,

Kelly, Pro'ective Geometry and Pro'ective Metrics,

ractive material here which was written fifteen

be made accessible to a wider audience.
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